Анализ и синтез систем автоматического регулирования

Определитель Гурвица может быть составлен для уравнения любого порядка. По главной диагонали слева направо выписываются все коэффициенты уравнения, начиная с

Анализ и синтез систем автоматического регулирования

Курсовой проект

Компьютеры, программирование

Другие курсовые по предмету

Компьютеры, программирование

Сдать работу со 100% гаранией

Содержание

 

Введение

Раздел 1. Анализ и синтез АСР

1.1 Постановка задачи синтеза

1.2 Постановка задачи анализа

Раздел 2. Синтез системы регулирования методами модального и симметричного оптимума

2.1 Основные положения метода модального оптимума

2.1.1 Критерий оптимизации

2.1.2 Вывод условий оптимизации

2.1.3 Вывод формул для расчета параметров настройки регуляторов в соответствии с методом модального оптимума

2.2 Основные положения синтеза систем методом симметричного оптимума

2.2.1 Критерий оптимизации

2.2.2 Вывод условий оптимизации

2.2.3 Вывод формул для расчета параметров настройки регуляторов в соответствии с методом симметричного оптимума

Раздел 3. Исследование объекта регулирования

3.1 Построение переходных характеристик объекта регулирования по основной (угол поворота) и вспомогательным регулируемым величинам (скорость вращения вала двигателя и ток якоря)

3.2 Построение амплитудной и амплитудно-фазовой частотных характеристик объекта регулирования по основной регулируемой величине

Раздел 4. Исследование не скорректированной системы регулирования электропривода

4.1 Анализ устойчивости системы

4.1.1 Анализ устойчивости с использованием алгебраического критерия устойчивости

4.1.2 Анализ устойчивости с использованием частотного критерия Найквиста

4.2 Анализ результатов исследования устойчивости

Раздел 5. Синтез системы регулирования электропривода промышленного робота

5.1 Синтез контура регулирования тока

5.1.1 Расчетная модель объекта в контуре тока

5.1.2 Выбор метода синтеза и расчет параметров настройки регулятора тока

5.1.3 Вывод эквивалентной передаточной функции контура тока

5.1.4 Построение переходных процессов в контуре тока и эквивалентном контуре тока при обработке задающего воздействия

5.1.5 Определение прямых показателей качества настройки регулятора тока

5.2 Синтез контура скорости

5.2.1 Расчетная модель объекта в контуре скорости без учета внутренней обратной связи

5.2.2 Выбор метода синтеза и расчет параметров настройки регулятора скорости

5.2.3 Вывод эквивалентной передаточной функции контура скорости

5.2.4 Построение переходных процессов в контуре скорости без учета внутренней обратной связи, с учетом внутренней обратной связи и эквивалентном контуре при отработке задающего воздействия

5.2.5 Определение прямых показателей качества переходных процессов

5.3 Синтез контура положения

5.3.1 Расчетная модель контура положения

5.3.2 Выбор метода синтеза и расчет параметров настройки регулятора положения

5.3.3 Построение переходных процессов в синтезированной системе с учетом и без учета внутренней обратной связи при отработке задающего воздействия и возмущения нагрузкой. Определение прямых показателей качества переходных процессов

Раздел 6. Сравнительный анализ качества синтезированной и не корректированной систем регулирования

Список литературы

Введение

 

Цель настоящей работы - выбор и обоснование типов регуляторов положения, скорости и тока, а также расчет параметров настройки этих регуляторов. Для синтеза автоматической системы будем использовать метод поконтурной оптимизации с использованием методов модального и симметричного оптимума.

При функциональном проектировании автоматических систем чаще всего применяют методы теории автоматического управления. Автоматическая система состоит из ряда технических устройств, обладающих определенными функциональными и динамическими свойствами. Для их описания и изучения автоматическую систему представляют некоторой совокупностью элементов, наделенных соответствующими свойствами.

Реальные технические объекты описываются нелинейными дифференциальными и алгебраическими уравнениями. Но поскольку на начальной ступени проектирования решают задачи предварительной оценки технических решений и прогнозирования, то для этих целей вполне обоснованно можно применять сравнительно простые математические модели. В этой связи нелинейные уравнения математической модели подвергают линеаризации.

Описание автоматических систем существенно упрощается при использовании методов операционного исчисления. Используя преобразование Лапласа, линейное дифференциальное уравнение приводят к алгебраическому уравнению с комплексными переменными.

В настоящей работе в качестве объекта регулирования рассматривается электромеханический привод (рис.1). Назначение привода - осуществление поворота выходного вала на некоторый заданный угол .

 

Рис.1. Упрощенная функциональная схема электропривода.

 

Рис.2. Функциональная схема обобщенного ОУ

 

При проектировании будем рассматривать математическую линеаризованную модель объекта. Каждому звену объекта поставим в соответствие передаточную функцию W (p), полученную из переходной функции y (t) звена.

 

Рис.3. Структурная схема объекта регулирования.

 

Таким образом, исходным данным к работе является структурная схема системы (рис.3.) со следующими известными передаточными функциями:

Wп =KП - передаточная функция преобразователя;

- передаточная функция электрической части двигателя;

- передаточная функция механической части двигателя;

- передаточная функция редуктора;

Wдп =Кдп - передаточная функция датчика положения;

Wдт= Кдт - передаточная функция датчика тока;

- передаточная функция датчика скорости.

Основной регулируемой величиной в системе является угол поворота выходного вала привода t). Вспомогательные регулируемые величины: угловая скорость вращения вала двигателя wt) и ток в обмотке якоря I (t).

Раздел 1. Анализ и синтез АСР

 

1.1 Постановка задачи синтеза

 

Одной из основных задач теория автоматического управления является обеспечение необходимого качества регулирования. Система знаний привела к созданию научного проектирования систем с заданными показателями качества. Синтез системы является сложной проблемой. Здесь можно выделить частные задачи:

. Обеспечение устойчивости системы.

. Повышение запаса устойчивости системы.

. Повышение точности регулирования.

. Улучшения качества переходных процессов.

Синтезом системы называется нахождение структуры системы регулирования и определение параметров системы, которые обеспечивают работу системы при заданных воздействиях при заданных показателях качества регулирования.

Процедура синтеза сопровождается анализом физических свойств системы, который позволяет выявить ее работоспособность и оценить степень выполнения технических требований к ней

Работоспособность автоматической системы определяется ее устойчивостью - способностью системы возвращаться в исходное состояние равновесия после исчезновения внешних воздействий, которые вывели ее из этого состояния. Степень выполнения технических требовании к автоматической системе оценивают на основе системы показателей качества процесса функционирования. Они характеризуют свойство системы удерживать выходные параметры в заданных пределах всех режимов работы.

В практической постановке задачи синтеза системы является известным объект регулирования. Физическая природа и технические данные объекта определяют как тип, так и характеристики исполнительного устройства. Как следствие известным является и сравнивающее устройство. Все эти перечисленные элементы называются функционально необходимыми.

После определения структуры неизменной части системы и динамических характеристик необходимых элементов начинается задача синтеза остальной части (изменяющейся) системы. На этом этапе определяется тип и место включения корректирующего устройства.

Регулятор-корректирующее устройство, реализующее типовые законы регулирования.

Корректирующее устройство добавляется в систему с целью придания требуемого качества. Синтезу системы предшествует 2-а этапа:

. Исследование объекта управления для определения динамических свойств.

. Выбор критерия качества.

Критериями качества рассматривают следующие варианты:

. Запас устойчивости.

. Показатель колебательности.

. Использование желаемых характеристик.

Выделяют две задачи синтеза:

. Параметрический синтез (выбор параметров корректирующих устройств).

Такая постановка задачи синтеза характерна для промышленных систем регулирования с типовыми структурными системы регулирования.

. Структурный синтез (выбор структуры корректирующих устройств).

Такой синтез осуществляет выбор структуры системы регулирования, а уж затем или одновременно параметрический синтез.

Теория автоматического управления разработала целый ряд методов синтеза автоматической системы. Существует две группы этих методов:

. Методы синтеза корректирующих устройств. Они позволяют определить структуру и параметры настройки регулятора.

. Методы параметрического синтеза. Они позволяют определить параметры настройки регуляторов определенного типа при заданной структуре системы регулирования.

 

1.2 Постановка задачи анализа

 

Автоматическая система предназначена для

Похожие работы

1 2 3 4 > >>