Введение
Изучение термо - и гидродинамических процессов в различного рода сплошных средах, в особенности многофазных средах, происходящих под воздействием внешних интенсивных ВЧ и СВЧ электромагнитных полей, является актуальным, как и в научном, так и в практическом отношениях, поскольку они могут составить основу новых технологических применений.
Таким образом, одной из важных физических проблем является изучение термо- и гидродинамических процессов в продуктивных породах и в других материалах нефтяной технологии при воздействии на них ВЧ и СВЧ электромагнитных полей. Большое значение имеет также исследование их диэлектрических свойств, так как они определяют эффективность силового и теплового взаимодействия среды с полем. Кроме того диэлектрические измерения в ВЧ и СВЧ диапазонах частот, как показывают исследования, могут составить основу метода определения эффективности действия удалителей асфальтено-смоло-парафиновых отложений, ингибиторов коррозии, деэмульгаторов и ПАВ. Установлено существование определенной корреляции между эффективностью действия и электрическими свойствами этих химреагентов и объекта воздействия. Это, по-видимому, объясняется тем, что поверхностная активность и диэлектрические свойства полярных молекул, которые и играют основную роль в этих процессах.
В связи с этим, целью данной работы являлось экспериментальное исследование диэлектрических свойств образцов нефти различных месторождений.
Задачами данной курсовой работы являлось:
Разработка и изготовление измерительной ячейки для проведения измерений диэлектрических свойств нефти.
Измерение тангенса угла диэлектрических потерь и диэлектрической проницаемости образцов нефти.
1.ИЗМЕРИТЕЛЬНЫЕ КОНДЕНСАТОРЫ И РОЛЬ ПАРАЗИТНЫХ ПАРАМЕТРОВ
диэлектрический нефть
Диэлькометрия - совокупность методов количественного определения веществ и исследования их молекулярной структуры, основанных на измерении диэлектрической проницаемости и тангенса угла диэлектрических потерь [10]. Диэлектрические свойства изучают в постоянном и переменном (с частотой до 1012 Гц) электрических полях. Как правило, определяют относительные величины εr = С/С0, где С и С0 - емкости одного и того же конденсатора соотв. с исследуемым веществом и с ">воздухом <http://www.xumuk.ru/encyklopedia/800.html>. Абсолютная величина ε = εrε0, где ε0 - диэлектрическая проницаемость ">вакуума <http://www.xumuk.ru/encyklopedia/685.html>. В переменном электрическое поле наблюдается сдвиг фазы между наложенным напряжением с частотой и током, протекающим через конденсатор с веществом. При этом потери электрической энергии количественно характеризуют величиной tg, где = 90 - . Ячейку с ">диэлектриком <http://www.xumuk.ru/encyklopedia/1455.html> принято изображать электрической эквивалентной схемой, состоящей из идеального (т. е. не имеющего потерь энергии) конденсатора емкости С, соединенного, как правило, параллельно с идеальным сопротивлением R, не имеющим реактивной проводимости. В этом случае tg = 1/ СR и его определение сводится к измерению С и R. При различных частотах электрического поля применяют различные методы измерения. В области = 10-1 - 107 Гц используют мостовые методы, в которых в одном из плеч электрического измерительного моста находится ячейка с исследуемым ">диэлектриком <http://www.xumuk.ru/encyklopedia/1455.html>, в других плечах - конденсаторы и сопротивления, которые подбирают так, чтобы скомпенсировать сдвиг фаз между током и напряжением в ячейке. При частотах от 105 до 1011 Гц используют резонансные методы, в которых сначала настраивают в резонанс с генератором колебательный контур с эталонным конденсатором переменной емкости (получают значение емкости С), а затем подключают параллельно конденсатор с исследуемым веществом и снова настраивают в резонанс (получают значение емкости эталонного конденсатора С). Емкость конденсатора с веществом С = С' - С.Величину R определяют методом замещения. Установив емкость эталонного конденсатора, равной С, отключают ячейку с ">диэлектриком <http://www.xumuk.ru/encyklopedia/1455.html>, последовательно присоединяют эталонное сопротивление и меняют величину последнего до наступления резонанса.
При измерении диэлектрической проницаемости и потерь материалов в области метровых и дециметровых длин волн возникает необходимость в так называемом измерительном конденсаторе, служащем для помещения образца диэлектрика. Количество вещества, которое должно быть взято для измерений, определяется, во-первых, специфическими требованиями методики, сводящимися, например, к удовлетворению условия квазистационарности внутри объема вещества и, во-вторых, требованиями, связанными с тем, чтобы вызываемые изменения регистрируемых величин могли быть надежно измерены, но не превосходили при этом определенных границ. В зависимости от частотного диапазона, конструкции измерительной установки, а также от других обстоятельств, обусловленных, например, необходимостью наложения на образец постоянного электрического (или магнитного) поля, либо в зависимости от поставленной задачи конструкция измерительного конденсатора или вид. образца могут иметь различный характер. В диапазоне сантиметровых волн измерительный конденсатор, вообще говоря, отсутствует, так как исследуемое вещество в этих случаях является органической частью установки, в связи с чем термин «измерительный конденсатор» носит лишь условный характер так же, как само понятие о сосредоточенной емкости.
Всякий измерительный конденсатор характеризуется некоторым числом констант, абсолютная величина которых, их зависимость от частоты и внешних условий определяют пригодность того или иного конденсатора для измерительных целей. На рис. 1 изображена эквивалентная схема измерительного конденсатора, в который введен исследуемый образец диэлектрика с потерями. Диэлектрические потери в этой схеме заменены эквивалентным сопротивлением , что может быть сделано с достаточной точностью при не слишком высокой частоте и малых потерях. Ёмкости зависят от конструкции и геометрических размеров конденсатора и являются характеризующими его константами.
Ёмкость называется обычно активной или рабочей емкостью измерительного конденсатора, в то время как емкости и являются, в общем случае, паразитными.
Емкость обусловлена полями рассеяния, т. е. краевыми полями конденсатора и емкостью между подводящими проводами, а емкость конденсатора учитывает емкости зазоров между образцом диэлектрика и обкладками конденсатора, которые могут быть предусмотрены специально для предотвращения непосредственного контакта образца с обкладками. Индуктивность представляет собой самоиндукцию проводов, при помощи которых конденсатор подключается в измерительную схему. Емкости являются константами конденсатора только в том случае, если их величина не меняется при помещении в конденсатор исследуемого диэлектрика. Это условие, однако, выполняется далеко не всегда, что является источником довольно серьезных экспериментальных ошибок при измерении диэлектрической проницаемости и потерь.
Причиной изменения является изменение распределения электрических полей и зарядов на обкладках конденсатора при введении в него исследуемого образца.
Простейшим измерительным конденсатором является плоский дисковый конденсатор с диаметром обкладок, значительно превышающим расстояние между ними (рис. 2,а). Если обкладки конденсатора плотно прижаты к образцу, то можно считать емкость . Эквивалентная схема такого конденсатора изображена на рис. 2,б, где паразитная емкость обусловлена наличием краевых полей. При помещении в конденсатор исследуемого образца емкости и , вообще говоря, изменяются, однако влияние этого изменения при может быть сделано весьма малым, что и осуществляется у конденсатора с малым расстоянием между пластинами по сравнению с диаметром его обкладок. Указанный путь уменьшения влияния паразитной емкости не всегда, однако, возможен, так как при уменьшении расстояния между пластинами и увеличении их диаметра емкость конденсатора сильно увеличивается. Это может привести к нежелательно большому изменению регистрируемых величин при введении образца в конденсатор. Оценка поправки к емкости плоского конденсатора, вносимой краевыми полями, показывает, что истинная емкость конденсатора (с площадью пластин ) оказывается больше емкости, рассчитанной по формуле
(3)
Это обстоятельство отчетливо видно из рис. 3, где кривая 1 соответствует емкости, вычисленной по формуле (3), а кривая 2 - истинной емкости конденсатора, состоящего из двух прямоугольных пластин шириной а, при расстоянии между пластинами (на один сантиметр длины). Вычисление поправки на краевой эффект (на один сантиметр длины пластины) для конденсатора с прямоугольными пластинами шириной может быть произведено по формуле:
(4)
Или, в случае круглых пластин по формуле:
(5)
Где радиус обкладок, толщина обкладок и расстояние между ними.
Тщательные измерения (4) показали, что изменение паразитной емкости при внесении образца диэлектрика весьма незначительно при не очень высоких значениях проницаемости (ε<20) и при толщинах образца порядка 1-6 мм. При больших значениях проницаемости изменение емкости может внести трудно учитываемые погрешности в измерения. Существенное уменьшение изменения емкости за счет перераспределения полей дают измерительные конденсаторы, у которых исследуемый образец размещается в центральной его части (рис. 4). Рассматривая плоский конденсатор с пластинами бесконечного радиуса (5), можно показать, что внесение диэлектрика (без потерь) в виде плоской шайбы радиуса не искажает электрическое поле.