О природе фундаментальных констант

Отсутствие широкого интереса к сверхсветовым движениям связано с прочно укоренившимся мнением, что скорости распространения материальных взаимодействий не могут превышать скорости

О природе фундаментальных констант

Статья

Философия

Другие статьи по предмету

Философия

Сдать работу со 100% гаранией

О природе фундаментальных констант

В. В. Корухов

В последние годы вопрос о существовании пределов применимости современных физических теорий становится весьма актуальным, особенно в связи с формированием новых представлений о ранней, плотной и горячей, стадии эволюции Вселенной [1]. Аналогичный вопрос возник в свое время при анализе конечной стадии квантового испарения черных дыр. В результате испарения, когда масса испаряющейся частицы становится равной массе самой черной дыры, появляется квантово-гравитационный объект с планковскими значениями параметров: т ~ 105 г, 1 ~ 1033 см [2]. Дальнейший анализ эволюции этого объекта оказался невозможным из-за отсутствия последовательной релятивистской квантово-гравитационной теории. В настоящее время большие надежды на решение данных проблем связывают с возможностью построения единой теории, существенную роль в которой должны играть фундаментальные константы ћ (постоянная Планка), с (скорость света), G (гравитационная постоянная) и k (постоянная Больцмана), а также их комбинации планковские величины.

Анализируя спектр излучения абсолютно черного тела, М.Планк в 1899 г. ввел в теорию постоянную ћ, названную затем квантом действия. Он отметил, что из этой константы ћ, скорости света с и гравитационной постоянной G можно, пользуясь размерностью, образовать абсолютную систему единиц длины, массы и времени.

lpl = (ћG / c3 )1/2 = 1,62·1033 см,

mpl = (ћc/G)1/2 = 2,18·105 г, (1)

tpl = (ћG/c5)1/2 = 5,4·1044 c.

По замыслу автора, такая система должна была сыграть важную роль в построении единой физики, выступая в качестве универсальной системы физических единиц. Однако метрологический смысл, вкладываемый Планком в эти величины, оказался не связанным с обычными физическими представлениями. Численные значения указанных величин на много порядков (кроме значения массы) отличались от тех, с которыми имела дело физика того времени. По-видимому, именно это обстоятельство и послужило причиной их долгого забвения.

По мере развития основных физических теорий квантовой физики и теории относительности постепенно начало складываться убеждение в том, что планковские величины (1) служат границей применимости классической общей теории относительности (ОТО) [3]. В частности, Дж.Уилеру принадлежит идея квантовых флуктуаций метрики с возможным изменением топологической структуры пространства-времени на малых расстояниях, где становятся существенными гравитационные флуктуации метрических коэффициентов: gmn ~ lpl /L ® 1 при L ® lpl [4].

Проблематичность применения релятивистской квантовой теории в области планковских масштабов связана также с необходимостью корректного учета гравитационных эффектов, когда сравниваются электромагнитные и гравитационные взаимодействия [5]. Характерный пример ограничения на возможную область “работы” квантовой теории и теории относительности следует из их известных принципов запрета.

Действительно, минимальная область локализации (принципиальная достижимая точность измерения) частицы подчиняется принципу неопределенности Гейзенберга:

Dx @ ћ/mc (2)

и соответствует максимальному релятивистскому импульсу (р = mc) в системе покоя частицы [6]. При этом точность измерения пространственной характеристики частицы ограничена ее комптоновской длиной волны

l і ћ/mc (3)

Далее, согласно представлениям ОТО, минимальная область пространственной локализации объекта с массой М определяется для удаленного неподвижного наблюдателя в наиболее простом случае решением Шварцшильда. Получение информации ограничено гравитационным радиусом

L і rg = 2GM/c2 (4)

Разрешенная для наблюдения область параметров реальных объектов, подчиняющихся неравенствам (3) и (4), представлена на диаграмме ML (см. рисунок). Точка пересечения граничных условий неравенств находится в области планковских значений. При 1 = L, m = М имеем

lpl ~ (ћG/c3 )1/2, mpl ~ (ћc/G)1/2.

Планковская масса играет роль минимальной структурной единицы со стороны макрообъектов и максимального значения для массы элементарных частиц, иначе говоря, представляет собой “последний предел локализации” [7].

“Биография” lpl как гравитационной границы применимости релятивистской квантовой теории достаточно богата “событиями” [8].

Обычно считается, что область “работы” теории квантовой гравитации, куда в качестве равноправных входят константы ћ, с и G, связана именно с малыми масштабами. Однако современной физике уже давно известны объекты больших масштабов, в описании которых используется этот полный набор констант.

Действительно, существует продел максимальной массы белых карликов, обусловленный наличием релятивистского вырожденного электронного газа (продел Чандрасекара),

MCh ~ mpl3/mp2 (5)

где тp масса протона. При дальнейшем увеличении плотности этих объектов нарушается условие равновесия; приводящее к образованию нейтронных звезд. Характерное предельное значение для массы нейтронной звезды, соответствующее релятивистскому вырожденному нейтронному газу (предел Ландау Оппенгеймера Волкова) [9] можно представить в виде

MLOV ~ mpl3/mn2 (6)

где тn масса нейтрона. Относительно недавно в связи с положительными результатами исследований по обнаружению массы покоя нейтрино было получено значение максимальной массы устойчивого образования, отождествленного со скоплением галактик и обусловленного наличием релятивистского вырожденного нейтринного газа [10],

Mn ~ mpl3/mn 2 (7)

где тn масса покоя электронного нейтрино [11].

Обращает на себя внимание возможность существования материального ряда, связывающего элементарную ферми-частицу, принадлежащую к объектам микромира, с предельной по массе равновесной структурной конфигурацией макромира:

Mi ~ mpl3/mi2 (8)

Рассматривая в качестве предположения справедливость этой закономерности и для более тяжелых ферми-частиц, мы приходим к пределу, когда Mi ® mpl при m ® mpl. Объекты макро- и микромира смыкаются в области планковских значений. Это еще раз указывает на возможность существования предела для дискретного спектра масс элементарных частиц и нижней границы макроструктуры нашей Вселенной.

Важным моментом современного состояния проблемы планковских величин является введение в физику новых предельных значений и их взаимное согласование через известные и общепринятые связи параметров объектов и явлений. М.А.Марков предлагает в качестве универсального закона природы принять существование предельного значения плотности материи rpl, соответствующей планковской плотности и равной c5/G2ћ [12]. Максимальное значение температуры Tpl = k1 (c5ћ /G)1/2, впервые рассмотренное в работе А.Д.Сахарова [13], было связано с предельным значением ускорения apl @ (c7/ћG)1/2 [14] посредством выявленной недавно связи релятивистского ускорения объекта и его температуры (эффект Унру) [15]. На предельный характер планковской массы как максимальной массы элементарной частицы указывалось уже давно [16]. Возможность рассмотрения современной физикой гипотетических объектов с планковскими параметрами mpl, lpl позволила на законном основании ввести новый класс частиц планкеоны [17], максимоны [18], геоны [19]. Принципиального отличия в параметрах между этими объектами нет.

Обращает на себя внимание отсутствие общего определения планковских величин. В дальнейшем планковской величиной будем называть любую физическую величину, составленную согласно размерности из фундаментальных констант ћ, с, G и k [20]:

Xpl = ћa Ч cb Ч Gg Ч kd (9)

Согласно этому определению, запишем некоторые новые величины: гравитационный потенциал j G = с2 (a = g = d = 0, b = 2); электрический потенциал j e = c2G1/2 (a = d = 0, b = 2, g = 1/2); скорость vpl = с (a = g = d = 0, b = 1); действие А = ћ (b = g = d = 0, a = 1); электрическое сопротивление R = с1 (a = g = d = 0, b = 1): энтропия S = k (a = b = g = 0, d = 1) и т.п. Как видим в значении максимального электрического потенциала отсутствует величина заряда. Впервые на эту особенность обратили внимание M.А.Марков и В.П.Фролов [21]. Они и указали на предельный характер рассматриваемого потенциала.

Все работы, посвященные исследованию предельных величин, не касаются тех сложных моментов, которые связаны с трудностями интерпретации понятия предельности физической величины. Это обусловлено тем обстоятельством, что проблема носит принципиальный характер и требует более глубокого анализа природы фундаментальных констант. Единственная планковская величина, вопрос о предельности которой является актуальным в настоящее время, скорость света. Зачастую предельное значение любой физической величины трактуется как невозможность получения какой-либо информации об этой величине за данным пределом. Полагая реально существующими планковские значения физических величин, мы с необходимостью приходим к возникновению ряда противоречий, в частности с некоторыми следствиями специальной теории относительности (СТО).

Действительно, согласно СТО, плотность вещества объекта (например, элементарной частицы) при v ® с стремится к бесконечности, тогда как существует инвариантное планковское значение плотности rрl; размер любого объекта в направлении движения при v ® с стремится к нулю, в то время как существует инвариантное планковское значение длины lpl. Подобное противоречие, связанное с появлением в физике инвариантной величины скорости света, было снято созданием СТО. При этом, согласно правилу сложения скоростей релятивистских объектов, суммарная скорость для инерциального наблюдателя ограничена инвариантной величиной планковской скорости скоростью света. Аналогичную интерпретацию могут иметь и некоторые другие планковские величины. Указанные выше противоречия устраняются, например, введением в СТО дополнительной, известной из других теорий инвариантной физи

Похожие работы

1 2 3 4 > >>