О группах Ассура, фермах Баранова, цепях Грюблера, плоских шарнирных механизмах и об их структурном синтезе

По сообщению N.I. Manolescu [7], первое упоминание о числе двенадцатизвенных цепей содержалось в докторской диссертации F. Weinhold [3] (1973): им

О группах Ассура, фермах Баранова, цепях Грюблера, плоских шарнирных механизмах и об их структурном синтезе

Статья

Математика и статистика

Другие статьи по предмету

Математика и статистика

Сдать работу со 100% гаранией

О группах Ассура, фермах Баранова, цепях Грюблера, плоских шарнирных механизмах и об их структурном синтезе

Э.Е. Пейсах, Санкт-Петербургский государственный университет технологии и дизайна

Структурные группы (или группы Ассура), статически определимые шарнирные фермы (или фермы Баранова), замкнутые кинематические цепи Грюблера это известные понятия, относящиеся к структуре плоских рычажных механизмов.

Центральной задачей в данной области является структурный синтез четырёх указанных объектов. Цель структурного синтеза получение всех принципиально возможных структурных схем групп Ассура, ферм Баранова, цепей Грюблера, плоских шарнирных механизмов для заданных значений числа их звеньев. При этом предполагается, что исключаются из рассмотрения различные особые случаи, например, совмещённые шарниры, пассивные связи и другие (такие особые случаи исследуются отдельно вне рамок указанной центральной задачи структурного синтеза).

Что касается числа n звеньев, то это число может принимать такие значения: для групп Ассура n = 2, 4, 6, 8, …; для ферм Баранова n = 3, 5, 7, 9, …; для цепей Грюблера и плоских шарнирных механизмов n = 4, 6, 8, 10, …

В практическом плане важным результатом структурного синтеза является создание каталогов групп Ассура, ферм Баранова, цепей Грюблера, плоских шарнирных механизмов. С точки зрения хранения и использования информации наиболее удобным вариантом таких каталогов являются электронные каталоги. Но при сравнительно малом числе звеньев (до восьми для групп Ассура и шарнирных механизмов, до девяти для ферм Баранова и до десяти для цепей Грюблера) такие каталоги могут быть и на бумажных носителях.

Отметим одну важную особенность задачи структурного синтеза любого из четырёх рассматриваемых объектов при заданном значении числа его звеньев. Существует один, и только один, правильный результат решения такой задачи. Например, существуют только две четырёхзвенных группы Ассура (рис. 1,а), только одна пятизвенная ферма Баранова (рис. 1,б), только две шестизвенных цепи Грюблера (рис. 1,в) и т. д. Каждая из названных структур имеет определённую конфигурацию (в топологическом отношении). Результат решения задачи структурного синтеза (если он правильный) есть объективная реальность, достоверный факт. Он не зависит от используемых методов и алгоритмов, от разных точек зрения у разных специалистов.

Какова же на сегодняшний день ситуация в структурном синтезе четырёх рассматриваемых объектов? Какие из результатов структурного синтеза можно с полным основанием считать твёрдо установленными достоверными фактами, не нуждающимися в какой-либо дополнительной проверке? Какие результаты получены, но нуждаются в проверке рядом независимых исследователей? Какие задачи структурного синтеза пока не решены?

Известные на сегодняшний день результаты структурного синтеза приведены в таблице 1.

а)б)в)

Рис. 1Таблица 1

Число звеньевЧисло групп

АссураЧисло цепей ГрюблераЧисло

механизмовЧисло звеньевЧисло ферм Баранова21--314211516102973817316153928105442230450611-12251638685619581613-14-3181621142902415-16---17-

Анализ литературных источников по теории механизмов за период с 80-х годов XIX века до наших дней позволяет дать ответы на поставленные выше вопросы. Результаты такого анализа (отражающие точку зрения автора данной статьи) приведены в таблице 2.

Отметим, что в двух первых из четырёх случаев, указанных в таблице 2, известны не только числа соответствующих структур, но и сами структуры (их полный состав). Несмотря на то, что в третьем случае результаты синтеза нуждаются в проверке и подтверждении несколькими независимыми специалистами, всё же достаточно высока вероятность того, что эти результаты являются правильными.

III

При сравнительно малых значениях числа n звеньев поиск соответствующих структур может быть выполнен вручную, то есть без помощи компьютера. При этом важную роль играет такой фактор, как возможность визуального контроля специалистом получаемых промежуточных результатов и исключения непригодных структур. Поэтому все неучтённые в математической модели задачи условия, которым должны удовлетворять искомые структуры, восполняются использованием упомянутого фактора.

Таблица 2

СтруктураЧисло звеньевГруппы Ассура2, 4, 6810, 1214, 16-Цепи Грюблера-4, 6, 8, 10121416, 18Шарнирные механизмы-4, 6810, 12, 1416, 18Фермы Баранова-3, 5, 7911, 13, 15, 17-█твёрдо установленные, достоверные и общепризнанные результаты█твёрдо установленные и достоверные результаты (по мнению автора статьи)█результаты, которые получены, но требуют дополнительной проверки €до настоящего времени не получены решения

По мере увеличения числа звеньев резко возрастает число соответствующих структур, и исследователь не в состоянии рассмотреть все возможные варианты при их анализе "вручную". Структурный синтез должен быть полностью автоматизирован. В связи с этим необходимо создавать такие математические модели, которые корректно отображали бы все условия в форме уравнений и неравенств, логические условия, а также трудно формализуемые условия, которые в структурной теории механизмов обычно выражаются в словесной форме.

При разработке программ структурного синтеза возникают две группы проблем: 1) учёт всего комплекса правил, условий и ограничений, относящихся к структурной теории механизмов, их формализация и представление в виде соответствующего алгоритма; 2) алгоритмизация процедур, связанных с формированием банка данных (БД) по синтезируемым структурам с заданным числом звеньев.

Перечислим теперь некоторые проблемы, связанные с формированием БД по плоским шарнирным механизмам (а также группам Ассура, фермам Баранова и цепям Грюблера):

· создание на базе структурной схемы механизма (то есть на базе графического объекта) её адекватного формализованного символьного представления (ФСП), а также визуализация ФСП, то есть его преобразование в структурную схему механизма в привычном для человека графическом виде с целью вывода на экран или на печать;

· идентификация структурных схем, то есть создание такого особого формализованного символьного представления, при котором обеспечивается взаимно однозначное соответствие между структурной схемой механизма и её ФСП, независимо от того, в каком порядке нумеруются звенья механизма (обычно же вид ФСП зависит от принятого порядка нумерации звеньев механизма);

· выявление изоморфных (одинаковых) структурных схем в некотором их наборе с целью их исключения из этого набора и оставления в БД только неизоморфных (неповторяющихся) структурных схем механизмов.

Все перечисленные процедуры должны выполняться в автоматическом режиме.

IV

За каждым числовым результатом, приведённым в таблице 1, скрывается своя, порою достаточна содержательная, история. Некоторые из результатов известны уже 130 лет (например, числа 1 и 2 во второй и третьей колонках таблицы 1), другие 90 лет (например, число 16 в третьей колонке), третьи 70 лет (например, число 10 во второй колонке), четвёртые 55 лет (например, числа 1, 1 и 3 в шестой колонке).

В качестве примера остановимся здесь только на синтезе кинематических цепей Грюблера с числом звеньев 10, 12 и 14.

Рядом авторов независимо друг от друга было установлено, что число десятизвенных кинематических цепей равно 230. Первое сообщение о 230 неизоморфных десятизвенных цепях относится к 1967 г. и принадлежит L.S. Woo [1]. В работе [1] приведены схемы всех 230 цепей, каждой из них присвоен свой номер. N.I. Manolescu и I. Tempea получили такой же результат в 1970 году (ссылки на эту и ряд последующих публикаций не включены нами в список литературы). О 230 десятизвенных кинематических цепях сообщают Q. Kiper и D. Schian в 1975 году. T.S. Mruthyunjaya в 1983 году нашёл с помощью разработанной им компьютерной программы 229 десятизвенных цепей, то есть его программа не смогла обнаружить одну десятизвенную цепь (а именно: цепь № 69 из каталога L.S. Woo [1]). Позднее число 230 было подтверждено в ряде публикаций, в том числе в работе [2], выполненной в 1998 году в Германии коллективом авторов (E. Peisach, H. Dresig, J. Schönherr и S. Gerlach).

По сообщению N.I. Manolescu [7], первое упоминание о числе двенадцатизвенных цепей содержалось в докторской диссертации F. Weinhold [3] (1973): им обнаружено 6855 таких цепей. Этот же результат был подтверждён в 1975 г. авторами Q. Kiper и D. Schian. В 1988 г. E.R. Tuttle, S.W. Peterson и J.E. Titus в двух статьях представили алгоритм, основанный на теории групп, с помощью которого они нашли 6856 двенадцатизвенных кинематических цепей, т. е. на одну больше по сравнению с ранее полученным результатом. Несколько иной результат, а именно 6862 цепи, был получен авторами W.-M. Hwang и Y.-W. Hwang в 1992 году. J. Srinath и S. Krishnamurty в 1995 году нашли 6856 кинематических цепей с 12 звеньями, что совпадает с одним из полученных ранее результатов. Разница в полученных разными авторами результатах (6855, 6856 и 6862), хотя и небольшая, потребовала ещё ряда независимых экспертиз. Программа, представленная в уже упомянутой выше работе [2], выполненной в 1998 году коллективом авторов, синтезировала 6856 неизоморфных двенадцатизвенных кинематических цепей. Точно такой же результат был получен в 2005 году авторами E.A. Butcher и C. Hartman [4]. Таким образом, есть основания полагать, что найденное значение 6856 является правильным.

Что касается синтеза 14-звенных цепей Грюблера, то на сегодняшний день имеются только две посвящённые им публикации. Впервые их общее число, оказавшееся равным 318162, было получено в 1998 году и представлено в упомянутой выше работе [2]. Точно такое же значение числа 14-звенных цепей было найдено в 2005 году в статье [4]. Авторы этой статьи E.A. Butcher и C. Hartman утверждают, что они первыми решили данную задачу. Скорее всего,

Похожие работы

1 2 3 > >>