О возможностях физической нереализуемости космологической и гравитационной сингулярностей в общей теории относительности

Пространства, в которых происходит самосжатие вещества или расширение космического пространства, не имеют всего этого и, наоборот, могут быть безграничными и

О возможностях физической нереализуемости космологической и гравитационной сингулярностей в общей теории относительности

Статья

История

Другие статьи по предмету

История

Сдать работу со 100% гаранией

О возможностях физической нереализуемости космологической и гравитационной сингулярностей в общей теории относительности

Павло ДАНЫЛЬЧЕНКО

Обоснована возможность нереализуемости космологической сингулярности Большого Взрыва Вселенной непосредственно в ортодоксальной ОТО. Показано отсутствие ограничения массы астрономического тела, самосжимающегося в СО Вейля, если тело является полым и имеет зеркальную симметрию собственного пространства. Обоснованы неизбежность самоорганизации в эволюционирующем физическом вакууме спиральноволновых образований, соответствующих элементарным частицам, и единая электромагнитная природа элементарных частиц.

About possibilities of physical unrealizability of cosmological and gravitational singularities in General relativity

Существование сингулярностей в ОТО рассматривалось Эйнштейном [1] и позже наиболее авторитетными специалистами в этой области физики (Иваненко [2]; Мёллер [3, 4]; Хокинг [5]) не только как наиболее очевидная трудность этой теории, но и как признак ограниченности ее области применения. Исходя из этого и из очевидности математической неизбежности существования сингулярностей в ОТО [6, 7], предпринимается множество попыток радикального усовершенствования ОТО для больших плотностей вещества. Здесь же избран иной путь решения этой проблемы.

Процесс расширения Вселенной как целого может иметь место только тогда, когда он реализуется и в каждой отдельной точке бесконечного пространства Вселенной. И его наличие может быть обусловлено лишь эволюционной изменчивостью свойств физического вакуума а, следовательно, и «адаптацией» элементарных частиц вещества к постоянно обновляемым условиям их взаимодействия. Поэтому, очевидно, расстояния между квазинеподвижными в СО Вейля галактиками (согласно с гипотезой Вейля [8...10], в этой не сопутствующей веществу СО они совершают только малые пекулярные движения) удлиняются в СО, сопутствующей эволюционно самосжимающемуся веществу, не из-за расширения космического пространства в «никуда», а из-за монотонного сокращения эталона длины в СО Вейля. Последнее вызвано калибровочной (то есть принципиально ненаблюдаемой в СО вещества, ввиду инвариантности мира людей к масштабным преобразованиям в микромире [11]) изменчивостью абсолютных значений пространственных параметров элементарных частиц, эволюционно самосжимающихся в абсолютном пространстве Ньютона Вейля. Это и является причиной непрерывного уменьшения всех объектов Вселенной в СО Вейля.

Обусловливание процесса, который имеет место в мегамире, процессами, которые имеют место в микромире, хорошо согласуется с существованием многих соответствий в соотношениях между атомными, гравитационными и космологическими характеристиками «большими числами» Эддингтона Дирака [2, 12, 13] и не противоречит современным физическим представлениям. Поэтому, расширение Вселенной, аналогично ежедневному движению Солнца по небосводу, можно рассматривать как явление, наблюдаемое лишь в некоторой избранной СО. Уже древние греки Аристарх из Самоса (ок. 310 ок. 230 до н.э.) и Селевк из Селевкии (ок. 190 неизв. до н.э.) предполагали, что на самом деле Земля вращается вокруг своей оси и вокруг Солнца. Однако, понадобилось около двух тысяч лет, чтобы это стало для всех очевидной истиной. Можно только надеяться, что явление расширения Вселенной не будет иметь такую же судьбу.

Обоснование допустимости в ОТО эволюционного процесса калибровочного самосжимания вещества

Ввиду относительности движения, на первый взгляд, не видно никакого различия между расширением пространства относительно вещества и самосжатием вещества в пространстве. На самом же деле, это различие не только имеется, но и является очень существенным. Мировые точки, в которых точки пустого собственного пространства самосжимающегося тела движутся в абсолютном пространстве Ньютона Вейля со сверхсветовой скоростью, находятся за пределами пространственно-временного континуума (ПВК) этого тела. При этом пустое собственное пространство самоограничивается горизонтом видимости. И более того, неодинаковость релятивистских сокращений размеров и релятивистских замедлений времени в разных точках собственного пространства, которая обусловлена неравенством скоростей этих точек, приводит к возникновению соответственно кривизны и физической неоднородности собственного пространства самосжимающегося тела.

Пространства, в которых происходит самосжатие вещества или расширение космического пространства, не имеют всего этого и, наоборот, могут быть безграничными и бесконечно большими. Поэтому, при расширении космического пространства относительно вещества горизонтом видимости будет ограничено пространство СО Вейля. При самосжимании же вещества в космическом пространстве (как здесь предполагается), наоборот, горизонтом видимости будет ограничено пространство СО, сопутствующей этому веществу. При этом в условно пустом пространстве самосжимающегося тела, а именно, в его дальних зонах, точки которых движутся в СО Вейля со сверхсветовыми скоростями, нет физических тел, увлекаемых этим пространством. Напротив, все астрономические объекты, условно неподвижные в СО Вейля, увлекаются расширяющимся космическим пространством. И на сколь угодно больших расстояниях от наблюдателя они могут двигаться, согласно зависимости Хаббла, со сколь угодно большими скоростями. Однако, скорость физического объекта не может превысить скорость света в точке, где он находится. Поэтому, на сколь угодно больших расстояниях от наблюдателя несобственные значения скорости света также должны быть сколь угодно большими. Это, однако, не следует из уравнений гравитационного поля ОТО. В противном случае собственное пространство наблюдателя должно быть конечным. А это возможно, как в случае фридмановой сингулярной модели расширяющейся Вселенной с ее конечным прошлым, так и в случае наличия горизонта видимости в собственном пространстве вещества. При безначальном существовании Вселенной (не допускающем наличия космологической сингулярности) нет других известных физических механизмов, которые смогли бы сформировать горизонт видимости собственного пространства любого астрономического тела, кроме релятивистского сокращения размеров и релятивистского замедления времени. Поэтому, явление расширения вечной Вселенной может быть обусловлено лишь калибровочным процессом эволюционного самосжатия вещества в космическом пространстве.

Такое калибровочное (для собственного наблюдателя) самосжатие вещества, которое проявляется в релятивистском сокращении размеров движущегося тела, было признано физически реальным впервые в специальной теории относительности. В ОТО оно вызвано влиянием гравитационного поля на вещество и может быть довольно значительным при релятивистском гравитационном коллапсе. Однако, если при перемещении вещества вдоль силовых линий гравитационного поля происходит калибровочное самодеформирование его в абсолютном пространстве, то тогда почему оно не может быть возможным и при «перемещении» тела лишь во времени? Ведь, благодаря объединению пространства и времени в единый ПВК (четырехмерное пространство-время Минковского) координатное время в ОТО равноценно пространственным координатам. Поэтому, гравитационное поле может рассматриваться как проявление запаздывания во времени процесса калибровочного самосжатия вещества в точках более отдаленных от центра астрономического тела и наличия влияния вещества на свойства физического вакуума через отрицательную обратную связь. Эта обратная связь реализуется посредством изменений собственных значений, как объемов молекул, так и плотностей энергии и энтальпии вещества. На ранних стадиях эволюции Вселенной, когда все ее пространство было заполнено веществом, собственное значение объема молекул постепенно увеличивалось, а собственные значения плотностей энергии и энтальпии вещества постепенно уменьшались. То же самое имеет место и в случае продвижения от центра астрономического тела к его внешней поверхности, то есть в случае продвижения в пространстве, а не во времени.

Внутреннее решение Шварцшильда для идеальной жидкости в сопутствующей СО

Рассмотрим внутреннее решение Шварцшильда для идеальной жидкости, которая калибровочно самосжимается в СО Вейля и, поэтому, имеет жесткую сопутствующую ей СО. В этой собственной СО жидкости, неоднородно сжатой гравитацией, линейный элемент имеет статическую и сферически симметричную форму [10] и поэтому задается приращениями угловых координат, приращением фотометрического радиуса r сферической поверхности (значение которого определяется через ее площадь и в непустом пространстве с кривизной в принципе может изменяться немонотонно вдоль метрического радиального отрезка rметр) и приращением координатного (астрономического) времени t. Функции a(r) и b(r), нормирующие квадраты этих приращений, характеризуют соответственно кривизну и физическую неоднородность собственного пространства жидкости и связаны с собственной плотностью массы μ(r) и собственным давлением p(r) дифференциальными уравнениями [10]. Из этих-то уравнений и могут быть найдены функции a(r) и b(r), а также радиальное распределение гравитационного радиуса rg(r) внутренней части жидкости, отделенной от ее верхней внешней части сферической поверхностью с фотометрическим радиусом r. На граничной (крайней) поверхности жидкости с фотометрическим радиусом re: a(re)b(re) = 1.

Зная функцию b(r) можно найти радиальное распределение несобственного (координатного) значения скорости света vc(r) = c(b)1/2, которое определяется в астрономическом (координатном) времени t СО всего жидкого тела и является неодинаковым в разных точках этого тела (зависит от радиальной координаты точки распространения света). Здесь c собственное значение скорости света, которое определяется в собственном квантовом времени точки распространения света, и, поэтому, является одинаковым во всех точках собственных пространств вещества (константа

Похожие работы

1 2 3 4 5 > >>