Нестабильность вращения Земли

Как отмечалось выше, в последние 20 лет надежно измеряются приливные колебания скорости вращения Земли. В течение многих лет автор вел

Нестабильность вращения Земли

Информация

История

Другие материалы по предмету

История

Сдать работу со 100% гаранией
ми на земной поверхности. Ее обычно связывают с такими внутриземными процессами, как взаимодействие ядра и мантии планеты. В пользу этой гипотезы свидетельствует тесная корреляция между изменениями скорости вращения Земли и флуктуациями скорости дрейфа ее эксцентричного магнитного диполя с характерным временем порядка 60 лет.

В последние годы получен ряд эмпирических фактов, которые заставляют по-новому взглянуть на эту проблему. Влияние атмосферы на вращение Земли можно оценить не только в результате подсчета изменения момента инерции и момента импульса атмосферы, но и путем вычисления моментов сил, действующих на Землю со стороны атмосферы. К ним относятся моменты сил трения ветра о подстилающую поверхность и моменты сил давления на горные хребты, стоящие на пути ветров. Для того чтобы определить эти моменты сил, требуются данные о полях ветра или атмосферного давления в приземном слое над всей планетой. Зная суммарный момент сил, легко вычислить ускорение и неравномерность вращения Земли.

Расчеты показали, что, возможно, не только сезонная, но и долгопериодическая неравномерность вращения Земли вызывалась в 1956-1977 гг. механическим воздействием атмосферы на Землю. Этот результат указывает на существование переноса "порцией" иногда положительного, а иногда отрицательного момента импульса через приземный слой атмосферы, что приводит к многолетней неравномерности вращения Земли. Соответствующие же изменения момента импульса ветров, необходимые для выполнения баланса, не наблюдаются. Поэтому должен быть какой-то источник момента импульса в атмосферу. Естественно было бы предположить, что атмосфера получает момент импульса либо из околоземного космического пространства, либо от Земли - в процессе многолетнего перераспределения воды между океаном и сушей. Оценки показали, что поток момента импульса из космоса за счет солнечного ветра и воздействия межпланетного магнитного поля очень мал, и дальнейшие усилия были направлены на исследования роли перераспределения воды.

Как известно, около 2% всей воды на Земле находится в замерзшем состоянии. Общая масса льда в современную эпоху приблизительно равна 28.4х1018 кг; из этого числа 90% приходится на ледниковый щит Антарктиды, 9% - на ледник Гренландии и менее 1% - на остальные горные ледники. Площади ледниковых щитов составляют: в Антарктиде 13.9 х1012м2, в Гренландии 1.8х1012 м2 а горных ледников 0.5х1012 м2.

Масса ледников меняется во времени. Например, 12 тыс. лет назад растаял громадный ледниковый щит, покрывавший почти всю Русскую равнину и значительные пространства Западной Европы и Северной Америки. Во время малого климатического оптимума, который имел место около тысячи лет назад, у ледникового щита Гренландии была существенно меньшая масса, чем ныне. Такое перераспределение воды между Мировым океаном и ледниковыми щитами сопровождалось изменением момента инерции Земли и должно было приводить к неравномерности ее вращения и движению полюсов.

Исходя из этого можно составить систему алгебраических уравнений, связывающих величину скорости вращения Земли и координаты полюса с массами льда в Антарктиде, Гренландии и воды в Мировом океане. Эти уравнения позволяют вычислять характеристики вращения Земли - координаты полюса и скорость вращения Земли. Если же массы льда неизвестны, но имеются данные о нестабильностях вращения Земли, то можно решить обратную задачу: по координатам полюса и скорости вращения вычислить ежегодные значения масс льда в Антарктиде, Гренландии и воды в Мировом океане. К сожалению, мы не смогли сопоставить ряды вычисленных масс льда в Гренландии и воды в Мировом океане с данными наблюдений из-за отсутствия последних. Лишь для Антарктиды удалось сопоставить вычисленную кривую изменений массы льда с наблюденной (рис. 7). Качественное согласие кривых оказалось таким, что связь многолетней неравномерности вращения Земли с флуктуациями глобального во-дообмена кажется возможной. Однако вычисленные колебания глобального водообмена почти в 29 раз больше наблюдаемых.

Этот противоречивый результаты свидетельствует о том, что наблюдаемые десятилетние особенности вращения есть не неравномерность вращения и движение полюсов всей Земли, а лишь изменения скорости дрейфа литосферы по астеносфере. В самом деле, моменты сил одного знака, возникающие в процессе флуктуаций глобального водообмена, действуют в течение десятилетий. Возможно, что лежащее под литосферой вещество астеносферы при столь длительных воздействиях ведет себя не как твердое тело, а течет подобно вязкой жидкости. Тогда десятилетний глобальный водообмен может вызвать скольжение литосферы по астеносфере, не оказывая заметного влияния на более глубокие слои Земли. При проведении астрономических наблюдений изменения скорости дрейфа литосферы регистрируются как "неравномерность вращения Земли" и "движение полюсов". Но на создание таких кажущихся "неравномерностей" и "движений" требуются перераспределения масс воды, в 29 раз меньшие. В пользу этой гипотезы свидетельствует неоднократно отмечаемая корреляция сейсмической активности с неравномерностью вращения Земли.

Состояние ледниковых щитов Антарктиды и Гренландии зависит от изменений климата. Поэтому флуктуации вращения Земли могут коррелировать с изменениями климатических характеристик и индексов. Установлена тесная связь десятилетних флуктуаций вращения Земли с изменениями эпох атмосферной циркуляции, колебаниями глобальной температуры воздуха, региональных осадков и облачности и даже с изменениями уловов промысловых рыб в Тихом океане. Замечено, что каждому режиму вращения Земли соответствует своя форма атмосферной циркуляции и, следовательно, свой режим погоды в различных районах земного шара. На рисунке 8 приведен ход изменений скорости вращения Земли, температуры воздуха в Северном полушарии и накопленной суммы аномалий повторяемости типа С атмосферной циркуляции за 1891-1998 гг. Сопоставление кривых показывает их тесную корреляцию.

Итак, десятилетние флуктуации скорости вращения Земли могут возникать из-за обмена моментом импульса между мантией и жидким ядром планеты. Изменения скорости вращения жидкого ядра обусловливают колебания скорости вращения мантии. При этом суммарный момент импульса Земли остается постоянным. С другой стороны, существует тесная связь между десятилетними флуктуациями вращения Земли и изменениями климатических и гляциологических характеристик. Но процессы в ядре Земли не могут влиять на смену эпох атмосферной циркуляции, флуктуации температуры воздуха, атмосферные осадки, состояние ледников и другие климатические процессы и характеристики.

Эти противоречия устраняются, если предположить, что существует третья причина, одновременно влияющая и на процессы в земном ядре, и на процессы в климатической системе, - гравитационное взаимодействие Земли с Луной, Солнцем и планетами. В частности, притяжение Луной, Солнцем и планетами несферичных, неоднородных оболочек Земли, занимающих эксцентричные положения, приводит к относительным смещениям и колебаниям их центров масс, к вынужденным их перемещениям. Комплекс возникающих при этом явлений в земных оболочках можно назвать обобщенными приливами.

С одной стороны, обобщенные приливы вызывают изменения в ядре, с ними связаны многолетние вариации геомагнитного поля. С другой стороны, они обусловливают изменения в климатической системе, которые приводят к флуктуациям вращения Земли. В таком случае, естественно, десятилетние вариации вращения Земли будут коррелировать со всеми вышеназванными геофизическими и гидрометеорологическими процессами.

Использование данных о вращении Земли в гидрометеорологии. Изучение неравномерности вращения Земли перспективно для решения обратных задач. Дело в том, что определять колебания глобальных характеристик атмосферы или гидросферы значительно сложнее, нежели отражающих их колебаний скорости вращения Земли. Так, для того чтобы вычислить момент импульса ветров, необходимо собрать данные о распределении ветра с высотой по возможности со всех аэрологических станций мира, произвести их объективный анализ (интерполяцию и экстраполяцию) и вычислить интеграл по объему, занятому атмосферой. Данные же о сезонных колебаниях угловой скорости вращения Земли позволяют без труда определять колебания момента импульса ветров почти с той же точностью. Для этого достаточно учесть лишь некоторые известные поправки (рис. 6).

Сезонная неравномерность вращения Земли отражает работу межполушарной тепловой машины и может использоваться в качестве показателей разности температур, интенсивности циркуляции воздуха и обмена влагой между Северным и Южным полушариями.

Десятилетние флуктуации скорости вращения Земли и вековое движение полюса применяются для расчета изменений масс льда в Антарктиде, Гренландии и воды в Мировом океане (рис. 7).

По десятилетним флуктуациям скорости вращения Земли можно следить и в какой-то степени прогнозировать колебания климата. Дело в том, что периоды ускорений вращения Земли (уменьшения длительности суток) совпадают с эпохами отрицательных аномалий частоты появления атмосферной циркуляции и положительных аномалий комбинированного типа атмосферной циркуляции. В эти периоды увеличивается масса льда в Антарктиде, ослабевает интенсивность зональной циркуляции, повышается темп роста температуры Северного полушария, преобладают положительные аномалии глобальной облачности, вырастают уловы промысловых рыб в Тихом океане (рис. 8). В периоды замедлений скорости вращения Земли масса льда в Антарктиде уменьшается, понижается темп роста глобальной температуры, отмечаются отрицательные аномалии глобальной облачности, снижаются уловы промысловых рыб в Тихом океане.

Как отмечалось выше, в последние 20 лет надежно измеряются приливные колебания скорости вращения Земли. В течение многих лет автор вел синхронный мониторинг приливных колебаний скорости вращения Зе

Похожие работы

<< < 1 2 3 4 >