Нестабильность вращения Земли

Как отмечалось выше, в последние 20 лет надежно измеряются приливные колебания скорости вращения Земли. В течение многих лет автор вел

Нестабильность вращения Земли

Информация

История

Другие материалы по предмету

История

Сдать работу со 100% гаранией
авномерности вращения Земли, представленные на рисунках, почти не связаны с влиянием приливного трения и вызваны другими причинами.

Земные приливы играют заметную роль в колебаниях скорости вращения с периодами менее месяца. Приливообразующая сила растягивает планету вдоль прямой, соединяющей ее центр с центром возмущающего тела - Луны или Солнца. При этом сжатие Земли увеличивается, когда ось растяжения совпадает с плоскостью экватора, и уменьшается, когда ось отклоняется к тропикам. Момент инерции * сжатой Земли больше, чем недеформированной шарообразной планеты. А поскольку момент импульса Земли (произведение ее момента инерции на угловую скорость) должен оставаться постоянным, то скорость вращения сжатой планеты меньше, чем недеформированной. При движении Луны и системы Земля-Луна, склонения Луны и Солнца, а также расстояния от Земли до Луны и Солнца меняются. Поэтому приливообразующая сила колеблется во времени. Соответствующим образом меняется сжатие Земли, что в конечном итоге и вызывает приливную неравномерность ее вращения. Наиболее значительными из этих изменений скорости вращения планеты являются колебания с полумесячным и месячным периодами.

* Момент инерции частицы относительно оси вращения Земли равен произведению ее массы на квадрат расстояния до оси. Момент инерции Земли - сумма моментов инерции составляющих ее частиц.

Чем же обусловлена неприливная неравномерность вращения Земли и движение полюсов? Существует много процессов, которые могут влиять на вращение Земли. Это изменения в распределении воздушных масс в атмосфере, снежного и ледяного покровов, осадков и растительности на земной поверхности, смены уровня Мирового океана, взаимодействие ядра и мантии Земли, извержения вулканов, землетрясения, воздействия внешних сил и т.д. Тщательные оценки вклада перечисленных процессов позволили выявить наиболее существенные из них.

В течение года массы воздуха и влаги перераспределяются между материками и океанами, а также между Северным и Южным полушариями. Так, в январе масса воздуха над Евразией на 6х1015 кг больше, чем в июле. От января к июлю из Северного полушария в Южное переносится 4х1015 кг воздуха. В течение зимы происходит накопление снега в северных районах Евразии и Северной Америки. Весной влага возвращается в Мировой океан. Все это меняет момент инерции Земли и сказывается на ее вращении. Оценки показывают, что сезонное перераспределение воздушных и водных масс мало влияет на сезонную неравномерность вращения планеты, но почти полностью обусловливает вынужденное движение полюсов.

Чандлеровское движение должно затухать со временем, так как энергия свободного движения полюсов превращается в Земле в тепло. Отсутствие затухания свободного движения полюса указывает на то, что существуют процессы, непрерывно его поддерживающие. К ним относят землетрясения, электромагнитное взаимодействие ядра и мантии Земли, лунно-солнечную прецессию и т.д.

Исследования последних лет показали, что главная причина сезонной неравномерности вращения Земли - атмосферная циркуляция. В среднем атмосфера движется относительно земной поверхности в низких широтах с востока на запад, а в умеренных и высоких - с запада на восток. Момент импульса преобладающих восточных ветров отрицателен, а западных - положителен. Можно было бы думать, что эти моменты компенсируют друг друга и момент импульса ветров всей атмосферы всегда равен нулю. Однако расчеты показывают, что момент импульса восточных ветров в несколько раз меньше момента импульсов западных ветров. Момент импульса ветров атмосферы составляет в среднем за год +14х1015 кг/м2 с-1. Его величина меняется в течение года от +16.1х1025 кг/м2 с-1 в апреле и ноябре до +10.9х1025 кг/м2 с-1 в августе.

Момент импульса - это физическая величина, которая не может возникать или уничтожаться. Она способна лишь перераспределяться. В рассматриваемом случае перераспределение происходит между атмосферой и Землей. Когда момент импульса атмосферы увеличивается, то есть усиливаются западные ветры или ослабевают восточные ветры, момент импульса Земли уменьшается, то есть замедляется ее вращение. Когда же момент импульса атмосферы уменьшается (ослабевают западные или усиливаются восточные ветры), вращение Земли ускоряется. Степень согласия изменений момента импульса атмосферы и момента импульса Земли в 1958-2001 гг. показан на рисунке 6. Величины отклонений момента импульса Земли взяты с обратным знаком. Видно, что ход обеих кривых совпадает в пределах ошибок наблюдений. Так что суммарный момент импульса планеты и атмосферы остается неизменным.

Рис. 6. Ход относительного момента импульса атмосферы (7) и вычисленных с обратным знаком приращений момента импульса Земли (2) в 1026 кг/м2 с-1

Факт, что момент импульса ветров всегда положителен, говорит о том, что атмосфера вращается вокруг оси быстрее Земли. Уподобляя движение атмосферы в целом вращению твердого тела, можно сказать, что период ее обращения вокруг оси составляет в апреле и ноябре 23 ч 36 мин, а в августе - 23445 мин. В среднем за год сутки для атмосферы длятся 23438 мин, а не 23 ч 56 мин, как для Земли.

Существует мнение, что раз атмосфера обгоняет Землю в суточном вращении, то она должна ускорять вращение планеты. Однако на неравномерность вращения Земли влияют лишь изменения момента импульса ветров. Постоянная же величина момента импульса ветров была заимствована атмосферой у Земли в момент формирования атмосферной циркуляции. Тогда скорость вращения Земли немного замедлилась (длительность суток возросла на 0.0024 с) и остается таковой в настоящее время. Если источник, поддерживающий ветры в атмосфере, иссякнет, то атмосферная циркуляция прекратится и длительность суток вернется к первоначальному значению.

Атмосферу, неравномерно разогретую по горизонтали солнечными лучами, можно рассматривать как тепловую машину. Она превращает тепловую энергию Солнца в кинетическую энергию ветров. Наиболее теплые части атмосферы в этом случае выполняют функции нагревателя, а холодные - холодильника. Рабочим телом служит сам воздух. В современной физике атмосферы известны несколько тепловых машин. Важнейшими из них являются тепловые машины, порождаемые контрастом температур между экватором и полюсами. Одна из них работает в Северном полушарии, а другая - в Южном. Благодаря этим машинам поддерживаются наблюдаемые восточные ветры в низких широтах и западные - в умеренных и высоких. Чем больше контраст температур экватор-полюс, тем интенсивнее атмосферная циркуляция в данном полушарии и тем больше величина момента импульса ветров.

Контраст температур в каждом полушарии бывает наибольшим зимой, а наименьшим - летом. Поэтому момент импульса ветров Северного полушария совершает гармонические колебания с периодом в год от максимального значения в январе до минимального в июле. В Южном полушарии годовое колебание имеет противоположную фазу: момент импульса максимален в июле, а минимален - в январе. Поэтому годовые колебания ветров Северного и Южного полушарий компенсируют друг друга, и момент импульса ветров атмосферы должен оставаться почти постоянным. Итак, тепловые машины первого рода обусловливают появление в атмосфере положительной величины момента импульса ветров, но почти не влияют на его сезонные колебания.

Долгое время оставалось неясным, почему момент импульса ветров атмосферы испытывает сезонные колебания. В 1975 г. было обнаружено, что в верхних слоях атмосферы самой теплой областью является не экватор и не параллель, на которой Солнце в полдень бывает в зените, а полярная "шапка" летнего полушария (в июле - северная, а в январе - южная). Оказалось, что средняя температура воздуха убывает от полюса летнего полушария до полюса зимнего (в июле - от Северного полюса до Южного, а в январе - от Южного полюса до Северного). Стало ясно, что в атмосфере имеется межполушарная тепловая машина, нагревателем которой является атмосфера летнего полушария, а холодильником - атмосфера зимнего полушария. Межполушарная тепловая машина уменьшает величину момента импульса ветров. Чем больше контраст температур между полушариями, тем значительнее этот эффект. В январе и июле момент импульса ветров уменьшается до минимальных значений, и скорость вращения Земли достигает максимальных величин. В апреле и ноябре температурные различия между атмосферой Северного и Южного полушарий выравнивается; межполушарная тепловая машина прекращает свою работу, поэтому в атмосфере удерживается предельно большая величина момента импульса ветров и скорость вращения Земли становится минимальной.

Различие величин июльского и январского максимумов скорости вращения Земли связано с тем, что атмосфера Северного полушария в среднем за год теплее атмосферы Южного полушария. Поэтому контраст температур между полюсами в июле значительно больше, чем в январе. Если бы подстилающие поверхности в Северном и Южном полушариях были одинаковы, то величины январского и июльского максимумов скорости вращения Земли не различались бы.

Природа десятилетних изменений скорости вращения Земли. Эти изменения слишком велики, чтобы их можно было объяснить так же, как и сезонные колебания, перераспределением момента импульса между атмосферой и Землей. Так, замедление скорости вращения с 1870 по 1903 г. было таким, что момент импульса Земли уменьшился на 48х1025 кг/м2 с-1 Если бы это замедление произошло из-за перераспределения момента импульса между Землей и атмосферой, то момент импульса ветров в 1870 г. был бы на 48х1025 кг/м2 с-1 больше, чем в 1903 г. Другими словами, скорость ветров в атмосфере должна была бы увеличиться более чем в три раза (за 33 года скорости западных ветров должны были постепенно усилиться, а восточных ослабеть всюду примерно на 20 м/с). Однако столь больших долгопериодических колебаний атмосферной циркуляции нет. Считается, что долгопериодическая неравномерность вращения Земли не может вызываться геофизическими процессами, протекающи

Похожие работы

< 1 2 3 4 > >>