МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ
ТАВРИЧЕСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ
им. В.И. ВЕРНАДСКОГО
ФАКУЛЬТЕТ МАТЕМАТИКИ И ИНФОРМАТИКИ
КАФЕДРА АЛГЕБРЫ И ФУНКЦИОНАЛЬНОГО АНАЛИЗА
*-АЛГЕБРЫ И ИХ ПРИМЕНЕНИЕ
Дипломная работа специалиста
студент 5 курса специальности математика
_________________________________
НАУЧНЫЕ РУКОВОДИТЕЛИ:
ассистент каф. алгебры и функционального анализа
_________________________________
профессор, доктор физико-математических наук
_________________________________
РЕШЕНИЕ О ДОПУСКЕ К ЗАЩИТЕ:
зав. кафедрой, профессор, д.ф.м.н.
_________________________________
СИМФЕРОПОЛЬ
2003
СОДЕРЖАНИЕ
Введение……………………………………………………………………………..4
Глава I. Основные понятия и определения…………………………………….6
§ 1. * - алгебры……………………………………………………………………...6
1.1. Определение * - алгебры……………………………………………………….6
1.2. Примеры…………………………………………………………………………7
1.3. Алгебры с единицей…………………………………………………………….7
1.4. Простейшие свойства * - алгебр……………………………………………….9
1.5. Гомоморфизм и изоморфизм алгебр…………………………………………11
§ 2. Представления ……………………………………………………………….13
2.1. Определение и простейшие свойства представлений……………………….13
2.2. Прямая сумма представлений ………………………………………………..15
2.3. Неприводимые представления………………………………………………..16
2.4. Конечномерные представления……………………………………………….19
2.5. Интегрирование и дезинтегрирование представлений ……………………..20
§ 3. Тензорные произведения……………………………………………………26
3.1. Тензорные произведения пространств……………………………………….26
3.2. Тензорные произведения операторов………………………………………..28
Глава II. Задача о двух ортопроекторах………………………………………..31
§ 1. Два ортопроектора в унитарном пространстве…………………………..31
1.1. Постановка задачи……………………………………………………………..31
1.2. Одномерные *-представления *-алгебры P2 ……………………………….31
1.3. Двумерные *-представления *-алгебры P2 ……………………………….32
1.4. n-мерные *-представления *-алгебры P2 …………………………………35
1.5. Спектральная теорема…………………………………………………………37
§ 2. Два ортопроектора в сепарабельном гильбертовом пространстве……39
2.1. Неприводимые *-представления *-алгебры P2 …………………………...39
2.2. Спектральная теорема…………………………………………………………41
Глава III. Спектр суммы двух ортопроекторов ……………………………...45
§ 1. Спектр суммы двух ортопроекторов в унитарном пространстве……...45
1.1. Спектр ортопроектора в гильбертовом пространстве……………………….45
1.2. Постановка задачи……………………………………………………………..45
1.3. Спектр в одномерном пространстве………………………………………….45
1.4. Спектр в двумерном пространстве……………………………………….…..46
1.5. Спектр в n-мерном пространстве……………………………………………..47
1.6. Линейная комбинация ортопроекторов………………………………………49
§ 2. Спектр суммы двух ортопроекторов в сепарабельном
гильбертовом пространстве …………………………………………………….52
2.1. Спектр оператора А = Р1 +Р2 …………………………………………………52
2.2. Спектр линейной комбинации А = аР1 + bР2 (0<а<b) ……………………..53
Заключение………………………………………………………………………..55
Литература ………………………………………………………………………..56
ВВЕДЕНИЕ
Пусть Н гильбертово пространство, L(Н) множество непрерывных линейных операторов в Н. Рассмотрим подмножество А в L(Н), сохраняющееся при сложении, умножении, умножении на скаляры и сопряжении. Тогда А операторная *-алгебра. Если дана абстрактная *-алгебра А, то одна из основных задач теории линейных представлений (*-гомоморфизмов А в L(Н)) перечислить все ее неприводимые представления (с точностью до эквивалентности).
Теория унитарных представлений групп восходит к XIX веку и связана с именами Г.Фробениуса, И.Шура, В.Бернсайда, Ф.Э. Молина и др. В связи с предложениями к квантовой физике теория унитарных представлений топологических групп, групп Ли, С*-алгебр была разработана И.М.Гельфандом, М.А. Наймарком, И.Сигалом, Ж.Диксмье, А.А. Кирилловым и др. в 60-70-х годах XX века. В дальнейшем интенсивно развивается теория представлений *-алгебр, заданных образующими и соотношениями.
Дипломная работа посвящена развитию теории представлений (конечномерных и бесконечномерных) *-алгебр, порожденных двумя проекторами.
Глава I в краткой форме содержит необходимые для дальнейшего сведения из теории представлений и функционального анализа. В §1 дано определение *-алгебры и приведены простейшие свойства этих алгебр. В §2 излагаются основные свойства представлений, вводятся следующие понятия: неприводимость, эквивалентность, прямая сумма, интегрирование и дезинтегрирование представлений. В §3 определяются тензорные произведения пространств, тензорные произведения операторов и др. (см. [2], [3], [4], [8], [9])
В Главе II изучаются представления *-алгебры P2
P2 = С < p1, p2 | p12 = p1* = p1, p22 = p2* = p2 >,
порожденной двумя самосопряженными идемпотентами, то есть проекторами (см., например, [12]). Найдены все неприводимые *-представления *-алгебры P2, с точностью до эквивалентности., доказаны соответствующие спектральные теоремы.
В §1 рассматриваются только конечномерные *-представления π в унитарном пространстве Н. Описаны все неприводимые и неэквивалентные *-представления *-алгебры P2 . Неприводимые *-представления P2 одномерны и двумерны:
4 одномерных: π0,0(p1) = 0, π0,0(p2) = 0; π0,1(p1) = 0, π0,1(p2) = 1;
π1,0(p1) = 1, π1,0(p2) = 0; π1,1(p1) = 1, π1,1(p2) = 1.
И двумерные: , τ (0, 1).
Доказана спектральная теорема о разложении пространства Н в ортогональную сумму инвариантных относительно π подпространств Н, а также получено разложение π на неприводимые *-представления. Результаты §1 относятся к математическому фольклору.
В §2 получены основные результаты работы. Для пары проекторов в сепарабельном гильбертовом пространстве Н приведено описание всех неприводимых представлений, доказана спектральная теорема.
В Главе III спектральная теорема для пары проекторов Р1, Р2, применяется к изучению сумм Р1+Р2, аР1+bР2 (0 < a < b). Получены необходимое и достаточное условие на самосопряженный оператор А для того чтобы А = Р1+Р2 или А = аР1+bР2, 0 < a < b, (этот частный случай задачи Г.Вейля (1912 г.) о спектре суммы пары самосопряженных операторов).
Глава I. Основные понятия и определения
§ 1. - алгебры
- Определение
- алгебры.
- А есть линейное пространство;
- в А введена операция умножения (вообще некоммутативного), удовлет-
воряющая следующим условиям:
Определение 1.1. Совокупность А элементов x, y, … называется алгеб-
рой, если:
α (x y) = (α x) y,
x (α y) = α (x y),
(x y) z = x (y z),
(x + y) = xz +xy,
x (y + z) = xy + xz для любых x, y, z А и любых чисел α.
Два элемента x, y алгебры А называются перестановочными, если xy = yx. Алгебра А называется коммутативной, если все ее элементы попарно пере-
становочны.
Определение 1.2. Пусть А алгебра над полем С комплексных чисел. Инволюцией в А называется такое отображение x → x* алгебры А в А, что
- (x*)* = x;
- (x + y)* = x* + y*;
- (α x)* =
x*;
- (x y)* = y*x* для любых x, y
С.
Алгебра над С, снабженная инволюцией, называется инволютивной алгеброй или *- алгеброй. Элемент х* называют сопряженным к х. Подмножество А, сохраняющееся при инволюции, называется само-
сопряженным.
Из свойства (i) следует, что инволюция в А необходимо является биекцией А на А.
1.2. Примеры
- На А = С отображение z →
(комплексное число, сопряженное к z) есть инволюция, превращающая С в коммутативную *- алгебру.
- Пусть Т локально компактное пространство, А = С(Т) алгебра непре-
рывных комплексных функций на Т, стремящихся к нулю на бесконечности (то есть для любого ε > 0 множество {tT: |f (t)| ε} компактно, f (t)
Похожие работы
-
* Алгебры и их применение
*-Алгебры и их применение
Алгебра высказываний в информатике
Алгебра Дж. Буля и ее применение в теории и практике информатики
Исследование некоторых задач в алгебрах и пространствах программ
Исторические экскурсы в курсе алгебры 7 класса как средство развития познавательного интереса
Линейные алгебры малых размерностей
О некоторых применениях алгебры матриц
Основные понятия алгебры множеств
Тождественные преобразования показательных и логарифмических выражений