Начала систематического курса стереометрии в средней школе

Проиллюстрируем схему на аксиомах группы С. Понятие плоскость, точка, прямая абстрактны, т.к. в каждом из случаев отвлекались от свойств ограниченности,

Начала систематического курса стереометрии в средней школе

Информация

Педагогика

Другие материалы по предмету

Педагогика

Сдать работу со 100% гаранией
i>

  1. Сообщить определения;
  2. проиллюстрировать эти понятия на модели куба, классной комнате, рисунке;
  3. провести логический анализ формулировки определения;
  4. выполнить задания на нахождение параллельных и скрещивающихся прямых на модели (рисунке) куба;
  5. сопроводить показ параллельных и скрещивающихся прямых соответствующими обоснованиями.

Для облегчения логического анализа определений и построения отрицания полезно на доске выполнить следующие записи:

  1. прямые a и b пересекаются: имеют общую точку, и притом только одну;
  2. прямые a и b не пересекаются: не имеют общих точек или общих точек более одной.

Понятие параллельного проектирования вводится с помощью генетического определения. В соответствии с общей особенностью генетических определений используется методическая схема изучения параллельного проектирования:

  • одновременно проговорить определения и произвести построения (выполняется учителем);
  • одновременно проговорить определения и показать соответствующие построения на готовом рисунке (выполняется учеником); стереть имеющийся на доске рисунок;
  • одновременно проговорить определение и выполнить новый рисунок (выполняется учеником).

Методику изучения теорем и их доказательств рассмотрим на примере признака параллельности прямой и плоскости: “Если прямая, не принадлежащая плоскости, параллельна какой-нибудь прямой в этой плоскости, то она параллельна и самой плоскости”.

Методическая схема:

  1. подвести учащихся к теореме, сформулировать ее;
  2. выполнить рисунок, краткую запись теоремы;
  3. сообщать общую идею теоремы;
  4. привести план доказательства;
  5. предоставить учащимся возможность самостоятельно осуществить док-во;
  6. осуществить доказательство (ученик);
  7. закрепить доказательство путем его воспроизведения;
  8. применить теорему к решению задач.

Подведение учащихся к теореме: на стол положим спицу а1, вторую спицу положим так, чтобы она была параллельна спице а1.

Вопрос: что можно сказать о взаимном расположении спицы а и поверхности стола?

После опыта задается вопрос: Какую теорему можно сформулировать?

Идея доказательства: (после выполнения рисунка и краткой записи теоремы).

Выполним доп. построение: через параллельные прямые а и а1 проведем плоскость 1.

Док-во от противного:

 

 

Учтем, что все общие точки плоскостей и 1 должны принадлежать прямой а1.

План доказательства:

  1. проводим плоскость 1;
  2. делаем допущение, что а не параллельна ;
  3. рассмотрим точку А, точку пересечения прямой а и плоскости ;
  4. приходим к выводу, что прямые а и а1 пересекаются;
  5. противоречие;
  6. а//.

После проведения доказательства решим следующую задачу:

 

 

Пусть SABC тетраэдр. MKP- середины ребер SA, SB, SC

Как располагаются прямые MK, KP, MP относительно ABC?

MK -средняя линия ASB => MK //AB => MK//ABC. Аналогично для др. прямых.

 

2. Методика изучения перпендикулярности прямых и плоскостей. Методическая схема изучения признака перпендикулярности прямой и плоскости

 

Содержание: определения: перпендикулярных прямых, перпендикулярных прямой и плоскости, перпендикуляра к плоскости, расстояние от точки до плоскости, наклонной, прямоугольной проекции наклонной, перпендикулярных плоскостей, теоремы о перпендикулярных прямых, признак перпендикулярности прямой и плоскости, теорем о связи между параллельностью и перпендикулярностью прямых и плоскостей в пространстве, теорема о трех перпендикулярах, теорема о перпендикулярных плоскостях.

Т.к. в учебнике Погорелова не вводится понятие о перпендикулярных скрещивающихся прямых то: пряма а, пересекающая плоскость , называется перпендикулярной к плоскости , если она перпендикулярна к любой прямой в плоскости , проходящей через точку пересечения прямой а с плоскостью .

Определения, приведенные в этой теме, относятся к генетическим (конструктивным), поэтому при их изучении используют методическую схему, определенную в “2” для параллельного проектирования. Согласно определения к плоскости проводим прямую, кот. пересекает ее в некоторой точке А. В этой плоскости найдется прямая, проходящая через точку пересечения.

Если эта прямая перпендикулярна к данной прямой, то ее называют перпендикулярной к плоскости. По рисунку куба попросить учащихся обозначить ребра куба, перпендикулярные к плоскостям AA1BB1, ABCD, D1C1CD, и назвать плоскости, которым перпендикулярны ребра C1D1, A1D1, BC.

 

 

Признак перпендикулярности:

Если прямая, пересекающая плоскость, перпендикулярна к двум прямым в этой плоскости, то она перпендикулярна к плоскости.

Сформулировать эту теорему учащиеся смогут сами, используя приведенную выше задачу (например, ребро А1D1 перпендикулярно к плоскости DD1C1 => А1D1DD1 и А1D1D1С1 т.е. двум прямым лежащим в этой плоскости).

Методическая схема изучения признака перпендикулярности прямой и плоскости

  1. подвести учащихся к признаку, сформулировать его;
  2. выполнить рисунок, краткую запись теоремы;
  3. сообщать общую идею доказательства теоремы;
  4. выполнить доп. построения;
  5. сообщать идею доказательства теоремы в более конкретной форме ;
  6. привести план доказательства;
  7. изложить доказательство ;
  8. закрепить доказательство по частям;
  9. воспроизведения доказательства полностью;

Для того чтобы подвести учащихся к теореме можно воспользоваться и др. моделью, состоящей из листа картона и нескольких спиц. С ее помощью показать, что если прямая перпендикулярна только к одной прямой, расположенной в плоскости , то этого не достаточно, чтобы прямая а была перпендикулярна к плоскости .

В учебнике дано слово “пересекающиеся” прямые. Здесь приведено традиционное доказательство, основанное на применении признаков равенства треугольников. Одно из первых доп. построений- проведение через точку А произвольной прямой Х, что необходимо для того чтобы доказать справедливость определения прямой, пересекающей плоскость, этой плоскости. Вторая часть доп. построений: AА1=AА2, произвольная прямая СВ, пересекающая прямые b, х, с. А1С, А1Х, А1В, А2С, А2Х, А2В - для образования треугольников, равенство которых будет доказано.

 

 

План доказательства:

А1СА2А1С= А2СА1ВА2А1В= А2ВА1ВС, А2ВСА1ВС=А2ВС=> А1ВХ= А2ВХА1ВХ, А2ВХА1ВХ=А2ВХ=> А1Х= А2ХА1ХА2х а

При наличии подробного плана доказательства краткую запись делать не целесообразно. Оставшаяся часть проводится устно.

Пункт 1 плана можно осуществить, направляя учащихся вопросами типа: Какую фигуру надо рассмотреть? Какое ее свойство нужно установить?

После того как доказано, что для А1СA2 выполняется равенство А1С=A2С?, Почему А1С=А2С? Почему А1В=А2В? Почему А2ВС=А2ВС? и т. п.

Заключение

 

При изучении аксиом целесообразно показать, что многие из них появились в результате наблюдения и абстрагирования различных видов практической деятельности.

Например, при ознакомлении учащихся с аксиомой прямой линии: “Через две различные точки пространства проходит, и притом только одна, прямая” можно рассказать о способе распиловки бревна на доски вручную.

Эффективными для развития пространственного воображения является использование шарнирных моделей, умение учащихся моделировать условия задач с помощью подручных средств. При изучении многогранников полезны каркасные модели тел, изготовленные учащимися.

 

Литература

 

1. К.О. Ананченко «Общая методика преподавания математики в школе», Мн., «Унiверсiтэцкае»,1997г.

2. Н.М.Рогановский «Методика преподавания в средней школе», Мн., «Высшая школа», 1990г.

3. Г.Фройденталь «Математика как педагогическая задача»,М., «Просвещение», 1998г.

4. Н.Н. «Математическая лаборатория», М., «Просвещение», 1997г.

5. Ю.М.Колягин «Методика преподавания математики в средней школе», М., «Просвещение», 1999г.

6. А.А.Столяр «Логические проблемы преподавания математики», Мн., «Высшая школа», 2000г.

 

Похожие работы

< 1 2