Мультипликативные полугруппы неотрицательных действительных чисел

S для некоторого . Не теряя общности, будем считать, что . Так как S несвязно, то по лемме 2 существует

Мультипликативные полугруппы неотрицательных действительных чисел

Дипломная работа

Математика и статистика

Другие дипломы по предмету

Математика и статистика

Сдать работу со 100% гаранией

Содержание

 

Введение3

Основные понятия и определения4

Глава 1. Делимость в мультипликативных полугруппах7

§1. Свойства НОД и НОК7

§ 2. Строение числовых НОД и НОК полугрупп11

Глава 2. Мультипликативные полугруппы неотрицательных чисел со свойствами (*) и (**)15

Библиографический список19

Введение

 

В математических исследованиях множество действительных чисел R очень популярно как бескрайний источник простых примеров и как множество, использующееся во многих структурах.

Рассматриваемое в данной работе множество неотрицательных действительных чисел это интересное легко интерпретируемое подмножествоR.

Как известно, различные подалгебры множества R+ (например, полугруппа N) исследовались ранее. В этой работе мы продолжим изучение мультипликативных полугрупп неотрицательных действительных чисел с0и1.

Работа состоит из двух глав. Первая глава содержит некоторые свойства наибольшего общего делителя и наименьшего общего кратного элементов целой полугруппы (§1). В этой же главе говорится о строении НОД и НОК полугрупп. Во второй главе получена топологическая классификация мультипликативных полугрупп SR+, обладающих одним из введенных специфических свойств:

(*) (a<b);

(**) (0<a<b).

Основные понятия и определения

 

Определение 1. Пусть Х множество произвольной природы и семейство подмножеств Х, называемых открытыми, удовлетворяющее условиям:

  1. пересечение конечного числа множеств из принадлежит ,
  2. объединение любого множества множеств из принадлежит ,
  3. и .

  4. Тогда называется топологическим пространством, топологией на Х.

Определение 2. Дополнения открытых множеств в Х называются замкнутыми множествами.

Определение 3. Пусть топологическое пространство и . Введем на множестве Х1 топологию 1. Открытыми в пространстве назовем все множества вида , где U произвольное открытое множество в Х. Тогда пространство называется подпространством топологического пространства , а топология 1 топологией, индуцированной топологией на множество Х1.

Определение 4. Семейство открытых множеств в топологическом пространстве называется базой топологии , если любое открытое множество в Х является объединением множеств из этого семейства.

Пример. На числовой прямой R с естественной (евклидовой) топологией открытыми множествами являются всевозможные объединения интервалов, они и образуют базу этой топологии. На множестве неотрицательных чисел R+ эта топология индуцирует топологию, в которой открытым множеством будет, например, R+(-1, 1).

Определение 5. Пространство Х1 называется плотным подпространством пространства Х, если любое непустое открытое множество в Х содержит точки множества Х1.

Очевидно, Х1 плотно в Х, если каждая точка подпространства Х1 является предельной точкой множества Х.

Определение 6. Множества в топологическом пространстве, являющиеся одновременно открытыми и замкнутыми, называются открыто-замкнутыми.

Определение 7. Топологическое пространство Х называется связным если открыто-замкнутыми множествами в нем являются лишь Х и .

Определение 8. Множество Х1 в топологическом пространстве Х называется связным, если оно связно как топологическое подпространство пространства Х.

Примеры:

1. Множество точек плоскости является связным, если в нем любую пару точек можно соединить кривой.

2. На числовой прямой связными множествами являются лишь промежутки.

Определение 9. Топологическое пространство называется нульмерным, если оно обладает базой из открыто-замкнутых множеств.

Пример. Дискретное топологическое пространство, в котором все его подмножества являются открытыми, нульмерно.

Далее везде будем обозначать символом S мультипликативную полугруппу.

Определение 10. Множество S с бинарной операцией умножения называется мультипликативной полугруппой, если эта операция обладает свойством ассоциативности, т.е. .

Определение 11. Элемент bS называется делителем элемента аS, если для некоторого . При этом говорят, что делится на , или делит (|).

Определение 12. Общий делитель элементов и , делящийся на любой их общий делитель, называется наибольшим общим делителем элементов и и обозначается НОД.

Определение 13. Элемент S называется кратным элементу S, если a делится на b.

Определение 14. Общее кратное элементов и , на которое делится любое их общее кратное, называется наименьшим общим кратным элементов и и обозначается НОК.

Определение 15. Полугруппа S называется НОД-полугруппой (НОК-полугруппой), если любые два элемента из S имеют наибольший общий делитель (наименьшие общее кратное).

Определение 16. Элемент из S называется неприводимым, если он имеет ровно два делителя 1 и а. Неприводимые элементы не представимы в виде произведения неединичных элементов, т.е. если .

Определение 17. Элемент из S называется простым, если . Очевидно, простые элементы неприводимы.

Определение 18. Полугруппа S называется топологической полугруппой, если на множестве S введена топология, и топологическая и алгебраическая структуры в S согласованы, т.е.

  1. S, полугруппа;
  2. S топологическое пространство;
  3. полугрупповая операция непрерывна в S:

.

Глава 1. Делимость в мультипликативных полугруппах

 

§1. Свойства НОД и НОК

 

Пусть S коммутативная мультипликативная несократимая полугруппа с 1 и без делителей единицы. Такие полугруппы называются целыми, или коническими.

Элементы и из S называются взаимно простыми, если НОД(,)=1.

Предварительно рассмотрим простейшие свойства отношения делимости в целых полугруппах.

Свойства делимости в целых полугруппах

(1) ;

(2) рефлексивность;

(3) антисимметричность;

(4) транзитивность;

(5) ;

(6) ;

(7) Любой простой элемент неприводим;

(8) р неприводим ;

Свойство 1. НОД и НОК нескольких элементов определены однозначно, если существуют.

Доказательство. Проведем доказательство для НОД двух элементов а и b из S. Пусть (a,b) и (a,b). Тогда из определения НОД следует и . По свойству антисимметричности имеем .

Свойство 2. .

Доказательство. Импликации и очевидны. Пусть , т.е. для некоторого . Очевидно, b общий делитель а и b. Возьмем произвольный общий делитель с элементов а и b. Для него существуют такой элемент , что и . Таким образом, с делит b. Это и означает, что . Аналогично доказывается .

Следствие 1. .

Следствие 2. и .

Свойство 3. и .

Доказательство следует из коммутативности операции умножения и свойств делимости.

Свойство 4. .

Доказательство. Обозначим d1=НОД(НОД(a,b),c). Так как d1 является общим делителем НОД(a,b) и c, то d1 общий делитель и для элементов a,b и c. Верно и обратно: любой общий делитель этих трех элементов является общим делителем для НОД(a,b) и c. Аналогичным свойством обладает и элемент d2=НОД(a, (НОД(b,c)). Тогда элементы d1 и d2 делят друг друга. По свойству антисимметричности делимости получаем d1=d2.

Свойство 5. .

Доказательство. Обозначим k1=НОК(НОК(a,b),c). Так как k1 является общим кратным элементов НОК(a,b) и c, то k1 общее кратное и для элементов a,b и c. Верно и обратно: любое общее кратное этих трех элементов является общим кратным для НОК(a,b) и c. Аналогичным свойством обладает и элемент k2=НОК(НОК(a,b),c). Тогда элементы k1 и k2 делят друг друга. По свойству антисимметричности делимости получаем k1=k2.

Свойство 6. Если элементы а и b не взаимно просты, то а и b имеют общий делитель, не равный 1.

Доказательство. По условию НОД(a,b)=d1. Тогда по определению d и есть не равный единице общий делитель а и b.

Свойство 7. =.

Доказательство. Обозначим d=НОД(a,b). По свойству (6) делимости элемент сd делит любой общий делитель элементов ас

Похожие работы

1 2 3 > >>