Мониторинг гидросферы земли

Проблема загрязнения вод суши (рек, озер, водохранилищ, подземных вод) тесно связана с проблемой обеспеченности пресной водой, поэтому наблюдениям и контролю

Мониторинг гидросферы земли

Статья

Экология

Другие статьи по предмету

Экология

Сдать работу со 100% гаранией

Мониторинг гидросферы земли

В. А. Семенов, Калужский государственный педагогический университет им. К.Э. Циолковского

Водная оболочка Земли - гидросфера играет важнейшую роль в существовании биосферы и человека. В статье приводится описание организации и современных методов наблюдений за компонентами гидросферы в атмосфере, Мировом океане, на поверхности суши и ее водных объектах, а также за загрязнением водных объектов.

Введение

Гидросфера - водная оболочка земного шара, расположенная в нижней части атмосферы, на поверхности земной коры и в ее толще, представляющая совокупность океанов, морей и водных объектов суши (рек, озер, болот, подземных вод, снежного покрова и ледников). По своим границам гидросфера совпадает с биосферой в понимании В.И. Вернадского. Исключительная роль воды в жизни человека и всего живого на Земле обусловливает большое и постоянно возрастающее внимание к изучению гидросферы и режиму водных объектов.

Содержание и перенос влаги в атмосфере, гидрологический и гидрохимический режим океанов и морей, рек и озер, искусственных водоемов, подземных вод, колебания баланса массы льда и стока воды с ледников, колебания размеров снежников в горах и изменения запасов воды в сезонном снежном покрове, колебания запасов воды в почве и испарения с ее поверхности (включая транспирацию растительностью) изучаются наземными средствами наблюдений, радиолокацией, зондированием атмосферы летательными аппаратами, в том числе из космоса.

Информация о состоянии гидросферы и ее объектов широко используется в сельском хозяйстве, транспорте, энергетике, строительстве, водоснабжении, в предупреждении о стихийных бедствиях (наводнениях, засухах, селевых потоках и сходе снежных лавин) и опасной для человека, водных и околоводных экосистем степени загрязнения объектов гидросферы. Организация наблюдений, передачи, обработки, хранения и распространения информации требует научного обоснования, а результаты наблюдений служат основанием для глобальных и локальных обобщений по гидрологическому и экологическому состоянию водных объектов.

Система наблюдений за количественными изменениями в гидросфере

Наблюдения за состоянием гидросферы являются частью общей системы наблюдений за окружающей природной средой (рис. 1). Основная работа по организации и осуществлению наблюдений, сбора и обработки информации о состоянии гидросферы выполняется национальными метеорологическими, гидрологическими, геологическими службами и водохозяйственными организациями стран земного шара.

Начало создания национальных служб и международного сотрудничества в изучении гидросферы относится к середине XIX века, когда в 1853 году была разработана программа проведения метеорологических наблюдений в океанах с целью повышения безопасности жизни на море. В результате прогресса, достигнутого в различных научных областях, в XX веке были разработаны и быстро усовершенствовались методы наблюдений за компонентами гидросферы в атмосфере, океанах и водных объектах суши. Были приняты меры по обмену данными наблюдений между службами. По мере совершенствования средств телесвязи такой обмен становится более быстрым и надежным.

Разработки в области использования спутников и компьютерной технологии привели к созданию в 1963 году под эгидой Всемирной метеорологической организации (ВМО) комплексной всемирной оперативной системы, названной Всемирной службой погоды, которая включает глобальную систему телесвязи и глобальную систему обработки данных. Создана также глобальная система сбора океанографических данных.

В настоящее время на земном шаре действуют около 9 тыс. станций на суше, производящих наблюдения за влажностью воздуха, облачностью, количеством выпадающих атмосферных осадков (из них 350 автоматизированы или частично автоматизированы). Около 700 морских судов производят наблюдения за различными параметрами состояния вод Мирового океана (температура, соленость и минеральный состав вод, направление течений). Эти данные дополняются наблюдениями с коммерческих самолетов (около 10 тыс. сводок в сутки). Передают информацию и 300 заякоренных буев или фиксированных платформ, работающих как автоматические морские станции, и около 600 буев, дрейфующих с океанскими течениями.

Огромный прогресс в области метеорологических спутников и автоматизированных наблюдательных систем за последние три десятилетия позволяет иметь в любой момент времени на орбите вокруг Земли четыре-пять оснащенных приборами полярно-орбитальных спутника с оборудованием автоматической передачи дважды в сутки изображений облачности над всей поверхностью Земли. Они проводят также глобальные наблюдения за влажностью воздуха, температурой поверхности моря и суши, распределением снежного и ледового покрова (рис. 2). Вторая система геостационарных или геосинхронных спутников, находящихся над экватором и вращающихся с той же скоростью, что и Земля, является таким образом стационарной по отношению к ней и непрерывно предоставляет метеорологическую информацию по тем же районам.

Наблюдения и анализ ежедневного состояния гидросферы применяются для принятия экономических и социальных решений, предсказания стихийных и экологических бедствий. Но для достижения лучшего понимания изменения состояния окружающей среды и ресурсов пресной воды необходимы дополнительные сведения о ее перемещении на поверхности Земли, о запасах в поверхностных водоемах и водоносных слоях почвы и геологических пород (почвогрунтах). Это является задачей гидрологических и геологических служб, водохозяйственных организаций стран мира.

Измерения речного стока и наблюдения за колебаниями уровня воды в озерах и водоносных пластах почвогрунтов проводятся на регулярной основе в некоторых пунктах с начала XX века, но наибольшее развитие стационарная сеть получила в середине XX века. В настоящее время действуют около 60 тыс. водомерных постов и станций. Но и до сих пор на некоторых, даже больших и важных в хозяйственном отношении реках измерение стока еще не производится. Это объясняется большой трудоемкостью измерений скорости и расхода воды (объем воды, протекающей через поперечное сечение потока в единицу времени).

Методы измерения скорости и расхода воды

Наиболее широкое распространение для измерения скорости потока, которая в сочетании с оценкой площади поперечного сечения потока промерами является основой для оценки расхода воды, получили гидрометрические вертушки различных типов (рис. 3). Для уменьшения трудоемкости измерений и обработки данных в последние годы разработаны автоматизированные системы измерения скорости и расхода воды контролируемого потока с движущегося судна с использованием кроме вертушки гидроакустического оборудования. В основе этого метода лежит эффект Доплера, который проявляется в смещении частоты отраженной от движущегося объекта электромагнитной волны на так называемую частоту Доплера:

где u - скорость объекта, l - длина волны, q - угол падения электромагнитной волны.

Работа по измерению расходов воды заключается в пересечении реки судном по заранее выбранному направлению, в оценке скорости течения воды и скорости судна, учете угла измерения скорости течения по отношению к поперечному сечению и измерению глубины реки (рис. 4). Эти сведения собирают и обрабатывают в компьютере на судне. Наиболее целесообразно использование этого метода на больших реках, где измерения скорости вертушкой не только особенно трудоемки, но и сопряжены с опасностью. Международный опыт организации стационарных наземных и радиолокационных наблюдений за другими объектами гидросферы наиболее полно изложен в [1].

Экспедиционные исследования

Приземные и наземные наблюдения, аэрологическое зондирование и систематические глобальные спутниковые измерения все же не обеспечивают всей необходимой информации для изучения механизмов, лежащих в основе природных процессов взаимодействия компонентов гидросферы от формирования облаков и их воздействия на перенос солнечной радиации до океанической циркуляции, которая реагирует на малые изменения в потоках между поверхностью океана и атмосферой. Это во многом определяет динамику климата, изменения влагопереноса с океанов на сушу. Для того чтобы количественно определить взаимодействие между глобальной циркуляцией атмосферы, переносами воды и энергии, мировой океанической циркуляцией и морскими льдами, влажностью поверхности суши и гидрологическим режимом водных объектов суши, осуществляются национальные и международные проекты комплексных стационарных и экспедиционных исследований.

Учитывая недостаточность информации о Мировом океане и взаимодействии океана и атмосферы, наибольшее количество экспедиций осуществлено в океаны и моря. Так, за 25 лет, с 1970 по 1994 год, научно-исследовательскими судами (НИС) России проведены экспедиционные наблюдения по 54 проектам исследований Мирового океана, из них 13 международных проектов. В рамках этих проектов выполнено более 1100 рейсов НИС (без рейсов во внутренние и окраинные моря России). Накопленные в результате экспедиций массивы данных наблюдений содержат информацию, позволившую уточнить знания о природе, причинно-следственных связях, механизмах возникновения, развития и затухания гидрометеорологических, физико-химических, биологических и геологических процессов, протекающих на поверхности и в толще вод океана, в атмосфере над ним и на морском дне.

Существенному расширению знаний о распределении и режиме горных ледников, материковых оледенений Антарктиды и арктических островов, о ресурсах пресной воды на Земле и режиме водных объектов суши способствуют международные программы ЮНЕСКО, проводимые с 1957 года с уточнениями целей и состава научных исследований на каждое десятилетие. Одним из значительных результатов работы по этим программам является открытие в 1995 году российскими учеными реликтового озера под ледовым панцирем Антарктиды.

Мониторинг загря

Похожие работы

1 2 3 > >>