Завдання 1
Для виготовлення виробів №1 і №2 є 100 кг металу. На виготовлення виробу №1 витрачається 2 кг металу, а на виріб №2 4 кг.
Скласти план виробництва, що забезпечує одержання найбільшого прибутку від продажу виробів, якщо відпускна вартість одного виробу №1 становить 3 грн. од., а виробу №2 2 грн. од., причому виробів №1 потрібно виготовити не більше 40 штук, а виробів №2 20 шт.
СировинаВиробиКількість сировиниВ1В2Метал24100Вартість, грн. кг32
Розвязок
Складаємо математичну модель задачі. Позначимо через х1 кількість виробу №1, що виготовляє підприємство за деяким планом, а через х2 кількість виробу №2. Тоді прибуток, отриманий підприємством від реалізації цих виробів, складає
∫ = 3х1+2х2.
Витрати сировини на виготовлення такої кількості виробів складають відповідно:
CI =2х1+4х2,
Оскільки запаси сировини обмежені, то повинні виконуватись нерівності:
2х1+4х2≤100
Окрім того, виробів №1 потрібно виготовити не більше 40 штук, а виробів №2 20 шт., тобто повинні виконуватись ще нерівності: х1≤40, х2≤20.
Таким чином, приходимо до математичної моделі:
Знайти х1, х2такі, що функція ∫ = 3х1+2х2досягає максимуму при системі обмежень:
Розв'язуємо задачу лінійного програмування симплексним методом.
Для побудови першого опорного плану систему нерівностей приведемо до системи рівнянь шляхом введення додаткових змінних.
2x1 + 4x2 + 1x3 + 0x4 + 0x5 = 100
1x1 + 0x2 + 0x3 + 1x4 + 0x5 = 40
0x1 + 1x2 + 0x3 + 0x4 + 1x5 = 20
Матриця коефіцієнтів A = a(ij) цієї системи рівнянь має вигляд:
Базисні змінні це змінні, які входять лише в одне рівняння системи обмежень і притому з одиничним коефіцієнтом.
Вирішимо систему рівнянь відносно базисних змінних:
x3, x4, x5
Вважаючи, що вільні змінні рівні 0, отримаємо перший опорний план:
X1 = (0,0,100,40,20)
Оскільки завдання вирішується на максимум, то ведучий стовпець вибираємо по максимальному негативному кількістю та індексного рядку. Всі перетворення проводимо до тих пір, поки не вийдуть в індексному рядку позитивні елементи.
Складаємо симплекс-таблицю:
ПланБазисВx1x2x3x4x5min1x31002410050x4401001040x520010010Індексний рядокF(X1)0-3-20000
Оскільки, в індексному рядку знаходяться негативні коефіцієнти, поточний опорний план неоптимальний, тому будуємо новий план. У якості ведучого виберемо елемент у стовбці х1, оскільки значення коефіцієнта за модулем найбільше.
ПланБазисВx1x2x3x4x5min2x320041-205x140100100x5200100120Індексний рядокF(X2)1200-20300
Даний план, також не оптимальний, тому будуємо знову нову симплексну таблицю. У якості ведучого виберемо елемент у стовбці х2.
ПланБазисВx1x2x3x4x5min3x25010,25-0,505x140100100x51500-0,250,5120Індексний рядокF(X3)130000,5200
Оскільки всі оцінки >0, то знайдено оптимальний план, що забезпечує максимальний прибуток: х1=40, х2=5. Прибуток, при випуску продукції за цим планом, становить 130 грн.
Завдання 2
Записати двоїсту задачу до поставленої задачі лінійного програмування. Розвязати одну із задач симплексним методом і визначити оптимальний план іншої задачі.
Розвязок
Розвяжемо задачу лінійного програмування симплексним методом.
Визначимо мінімальне значення цільової функції F(X) = x1+3x2при наступних умовах-обмежень.
9x1+10x2≥45
5x1-x2≤42
-x1+13x2≤4
Для побудови першого опорного плану систему нерівностей приведемо до системи рівнянь шляхом введення додаткових змінних.
9x1 + 10x2-1x3 + 0x4 + 0x5 = 45
5x1-1x2 + 0x3 + 1x4 + 0x5 = 42
-1x1 + 13x2 + 0x3 + 0x4 + 1x5 = 4
Введемо штучні змінні x.
9x1 + 10x2-1x3 + 0x4 + 0x5 + 1x6 = 45
5x1-1x2 + 0x3 + 1x4 + 0x5 + 0x6 = 42
-1x1 + 13x2 + 0x3 + 0x4 + 1x5 + 0x6 = 4
Для постановки задачі на мінімум цільову функцію запишемо так:
F(X) = x1+3x2+Mx6 =>min
Вважаючи, що вільні змінні рівні 0, отримаємо перший опорний план:
X1 = (0,0,0,42,4,45).
ПланБазисВx1x2x3x4x5х60х645910-1001x4425-10100х54-1130010Індексний рядокF(X0)0000000
Переходимо до основного алгоритму симплекс-методу.
ПланБазисВx1x2x3x4x5x6min1х645910-10015,5x4425-101000х54-11300100,3077Індексний рядокF(X1)00000000
Оскільки, в індексному рядку знаходяться позитивні коефіцієнти, поточний опорний план неоптимальний, тому будуємо новий план. У якості ведучого виберемо елемент у стовбці х2, оскільки значення коефіцієнта за модулем найбільше.
ПланБазисВx1x2x3x4x5x6min2х641,929,770-10-0,769214,29x442,314,920010,076908,59х20,3077-0,07691000,076900Індексний рядокF(X2)00000000
Даний план, також не оптимальний, тому будуємо знову нову симплексну таблицю. У якості ведучого виберемо елемент у стовбці х1.
ПланБазисВx1x2x3x4x5x6min3х14,2910-0,10240-0,07870,10240x421,18000,503910,4646-0,503945,59х20,637801-0,007900,07090,00799Індексний рядокF(X3)00000000
Даний план, також не оптимальний, тому будуємо знову нову симплексну таблицю. У якості ведучого виберемо елемент у стовбці х5.
ПланБазисВx1x2x3x4x5x64х1511,11-0,1111000,1111x4170-6,560,555610-0,5556х59014,11-0,1111010,1111Індексний рядокF(X4)0000000
Оптимальний план можна записати так:
x1 = 5
x4 = 17
x5 = 9
F(X) = 1*5 = 5
Складемо двоїсту задачу до поставленої задачі лінійного програмування.
9y1+5y2-y3≤1
10y1-y2+13y3≤3
45y1+42y2+4y3 => max
y1 ≥ 0
y2 ≤ 0
y3 ≤ 0
Рішення двоїстої задачі дає оптимальну систему оцінок ресурсів. Використовуючи останню інтеграцію прямої задачі знайдемо, оптимальний план двоїстої задачі. Із теореми двоїстості слідує, що Y = C*A-1.
Сформуємо матрицю A із компонентів векторів, які входять в оптимальний базис.
Визначивши обернену матрицю А-1 через алгебраїчне доповнення, отримаємо:
Як видно із останнього плану симплексної таблиці, обернена матриця A-1 розміщена у стовбцях додаткових змінних.
Тоді Y = C*A-1 =
Запишемо оптимальний план двоїстої задачі:
y1 = 0.11
y2 = 0
y3 = 0
Z(Y) = 45*0.11+42*0+4*0 = 5
Завдання 3
Розвязати транспортну задачу.
147912502312430021314150110801009070
Розвязок
Побудова математичної моделі. Нехай xij кількість продукції, що перевозиться з і-го пункту виробництва до j-го споживача . Оскільки , то задачу треба закрити, тобто збалансувати (зрівняти) поставки й потреби:
У нашому випадку робиться це введенням фіктивного постачальника, оскільки . З уведенням фіктивного споживача транспортній таблиці додатково заявляється n робочих клітинок.
Ціни, додатковим клітинкам, щоб фіктивний стовбець був нейтральним щодо оптимального вибору планових перевезень, призначаються усі рівні нулю.
Занесемо вихідні дані у таблицю.
В1В2В3В4В5В6ЗапасиА1147910250А2231240300А3213140150Потреби110801009070250
Забезпечивши закритість розв'язуваної задачі, розпочинаємо будувати математичну модель даної задачі:
Економічний зміст записаних обмежень полягає в тому, що весь вантаж потрібно перевезти по пунктах повністю.
Аналогічні обмеження можна записати відносно замовників: вантаж, що може надходити до споживача від чотирьох баз, має повністю задовольняти його попит. Математично це записується так:
Загальні витрати, повязані з транспортуванням продукції, визначаються як сума добутків обсягів перевезеної продукції на вартості транспортування од. продукції до відповідного замовника і за умовою задачі мають бути мінімальними. Тому формально це можна записати так:
minZ=1x11+4x12+7x13+9x14+1x15+0x16+2x21+3x22+1x23+2x24+4x25+0x26+2x31+1x32+3x33+1x34+ +4x35+0x36.
Загалом математична модель сформульованої задачі має вигляд:
minZ=1x11+4x12+7x13+9x14+1x15+0x16+2x21+3x22+1x23+2x24+4x25+0x26+2x31+1x32+3x33+1x34+ +4x35+0x36.
за умов:
Запишемо умови задачі у вигляді транспортної таблиці та складемо її перший опорний план у цій таблиці методом «північно-західного кута».
AiBjuib1 = 110b2 = 80b3 = 100b4=90b5=70b6=250а1 = 2501
1104
807
[-]609
1
[+]0
u1 = 0а2 = 3002
3
1
[+]402
904
[-]700
100u2 = -6а3 = 1502
1
3