Метод георадиолокационного подповерхностного зондирования

Анализ волновой картины на радарограмме заключается в расчленении разреза на ряд участков или областей, которые отличаются друг от друга характером

Метод георадиолокационного подповерхностного зондирования

Информация

Геодезия и Геология

Другие материалы по предмету

Геодезия и Геология

Сдать работу со 100% гаранией

Оглавление

 

Введение

Глава 1. Основы метода

.1 Электромагнитные волны в земле

.2 Отражение и дифракция электромагнитных волн

.3 Глубинность, разрешающая способность и детальность георадарных исследований

Глава 2. Методика и аппаратура

.1 Методика

.2 Аппаратура

Глава 3. Обработка и интерпретация

.1 Обработка данных

.2 Интерпретация георадарных данных

Заключение

Список литературы

 

 

Введение

 

Метод георадиолокационного подповерхностного зондирования (метод георадар) основан на изучении распространения электромагнитных волн в среде.

Идея метода заключается в излучении импульсов электромагнитных волн и регистрации сигналов, отраженных от границ раздела слоев зондируемой среды, имеющих различные электрофизические свойства. Такими границами раздела в исследуемых средах являются, например, контакт между сухими и влагонасыщенными грунтами (уровень грунтовых вод), контакты между породами различного литологического состава, между породой и материалом искусственного сооружения, между мерзлыми и талыми грунтами, между коренными и рыхлыми породами.

Все задачи, решаемые с помощью георадара, могут быть разделены на две большие группы с характерными для каждой группы методиками исследований, способами обработки, типами отображения объектов исследования в поле электромагнитных волн и представления результатов. Первая группа включает в себя геологические, гидрогеологические и инженерно-геологические задачи:

картирование геологических структур - поверхности коренных пород под рыхлыми осадками, уровня грунтовых вод, границ между слоями с различной степенью водонасыщения;

определение мощности водного слоя и картирование поддонных отложений.

определение мощности слоя сезонного промерзания/оттаивания, оконтуривание областей вечной мерзлоты, таликов

Вторая группа задач включает в себя поиск локальных объектов, обследование инженерных сооружений, нарушение штатной ситуации, например:

картирование коммуникаций (трубопроводов и кабелей);

исследование участков разреза с нарушенным естественным залеганием грунта - рекультивированных земель, засыпанных выемок.

Таким образом, в настоящее время георадар широко применяется в исследованиях при относительно небольшой глубине залегания целевых объектов (0.5 - 10 метров) за исключением изучения ледников и мерзлых пород, в которых глубинность повышается благодаря высоким сопротивлениям.

 

 

Глава 1. Основы метода

 

.1 Электромагнитные волны в земле

 

Для однородной изотропной среды распространение электрического поля удовлетворяет телеграфному уравнению:

 

 

Если пренебречь второй производной электрического поля, то это уравнение превратится в уравнение диффузии, а если пренебречь первой производной - мы получим волновое уравнение. Для того, чтобы определить, при каких условиях мы можем рассматривать только волновую часть поля, запишем телеграфное уравнение в частотной области:

 

 

где k - волновое число:

 

 

При условии, что

 

 

т.е. при низких проводимостях и высоких частотах, мы можем пренебречь индукцией и рассматривать только волновую часть электромагнитного поля.

Скорость распространения электромагнитной волны зависит от и электрической и магнитной проницаемостей среды. Значения диэлектрической и магнитной проницаемости представляются в виде ε=εоεотн и μ= μоμотн, где

 

 

магнитная и диэлектрическая проницаемости в вакууме.

Для большинства горных пород значение магнитной проницаемости μотн близко к единице и не зависит от частоты поля. С учетом этого, скорость распространения электромагнитной волны

 

 

где с - скорость распространения электромагнитных волн в вакууме

 

 

Скорость электромагнитных волн - наиболее важный для радарных исследований параметр среды, поскольку отраженные волны, которые мы регистрируем, возникают на границах сред с разными скоростями. С другой стороны, разрешающая способность волновых методов определяется длиной волны (λ), которая равна

 

 

где f - это частота.

Диэлектрическая проницаемость, а следовательно, и скорость распространения электромагнитных волн незначительно зависят от частоты и типа грунтов, а определяется, главным образом, их влагонасыщенностью. В таблице 1 представлены значения диэлектрической проницаемости, скорости и длины волны (на частоте 100МГц) для некоторых сред.

В сейсморазведке скорости определяют по годографам отраженных волн. В радиолокации таким способом определить скорости очень трудно. Электромагнитные волны быстро затухают, и регистрировать сигналы на большом расстоянии между источником и приемником практически невозможно. Реальные скорости можно определить либо используя априорную информацию о строении разреза, либо по дифрагированным волнам, возникающим на неоднородностях разреза.

 

Таблица 1

 

1.2 Отражение и дифракция электромагнитных волн

 

Распространение электромагнитных волн в первом приближении подчиняется законам геометрической оптики (рис.1. 1, рис. 1.2).

Отражение электромагнитных волн. Коэффициент отражения при нормальном падении волны на границу двух сред 1 и 2 с различной диэлектрической проницаемостью ε будет:

 

.

 

Дифракция электромагнитных волн. Это явление возникает в том случае, когда электромагнитными волнами облучается объект, размеры которого сравнимы с преобладающей длиной волны.

Это чрезвычайно важное для георадиолокационных следований явление, которое позволяет определить глубину залегания объекта и скорость распространения электромагнитных волн в среде над объектом. Дифрагированная волна на радарограмме выражается в виде гиперболы (годографа дифрагированной волны), которая описывается следующим уравнением:

 

,

 

Рис. 1 - Схема образования отраженной волны от наклонной границы раздела слоев с разными диэлектрическими проницаемостями (А - глубинный разрез вдоль линии наблюдения; Б -временной разрез)

Рис. 2 - Схема образования дифрагированной электромагнитной волны от трубы (А - глубинный разрез вдоль линии наблюдения; Б - временной разрез)

 

где L - путь, пройденный волной, V - скорость, h - глубина залегания объекта.

Глубинность, разрешающая способность и детальность георадарных исследований.

Глубинностью исследований называется максимальная глубина отражающего объекта, который проявляется на радарограмме. Глубинность исследований тем больше, чем ниже центральная частота возбуждаемых электромагнитных колебаний и выше удельное сопротивление разреза, так как поглощение электромагнитного поля пропорционально корню из произведения частоты и проводимости.

Разрешающей способностью по глубине называют минимальное расстояние по глубине, на котором могут быть различимы два отражающих объекта или их детали. Она определяется длиной волны, которая прямо пропорциональна скорости и обратно пропорциональна частоте электромагнитных волн в среде.

Разрешающая способность по горизонтали определяется размером первой зоны Френеля. Размеры первой зоны Френеля зависят от глубины объекта и центральной частоты зондирующего импульса. Чем меньше глубина и выше частота, тем меньше размер 1ой зоны Френеля и, следовательно, выше разрешающая способность по горизонтали.

При понижении частоты падает разрешающая способность, но увеличивается глубинность исследований. Например, при сопротивлениях 150 -300 Ом·м и частоте 50 - 100 МГц глубинность составляет в среднем 10 - 15 метров, а разрешающая способность при этом составит 0.5 - 1 м.

Детальность или интервал наблюдений (расстояние между трассами) по профилю зависит от свойств аппаратуры и способа наблюдений. Она определяется двумя характеристиками - количеством сигналов, возбуждаемых и принимаемых в единицу времени и скоростью перемещения по профилю при работе в движении. Рекомендуемое расстояние между трассами 4 - 5 см.

На рис.3 показаны результаты физического моделирования полей дифракции над различными неоднородностями, закопанными в грунт.

 

Рис. 3 - Радарограммы, полученные на тестовом полигоне (Италия). Георадар RAMAC/GPR, частота 200МГц. А - радарограмма, Б - физическая модель разреза

Тестовые объекты: A) полистироловый диск, диаметр 60 см, толщина 30 см, глубина до верхней кромки около 100 см; B) полистироловый диск, диаметр 60 см, толщина 15 см, глубина до верхней кромки около 60 см; C) бетонная труба, диаметр 60 см, глубина до центра около 100 см; D) полихлорвиниловая (PVC) труба, диаметр 20 см, глубина до центра около 60 см; E) железная труба, диаметр 6.35 см, глубина до центра около 60 см; F) железная труба, диаметр 6.35 см, глубина до центра около 30 см; G) деревянный диск, диаметр 60 см, толщина 4 см, глубина до верхней кромки около 60 см; H) железный диск, диаметр 60 см, толщина 4 см, глубина до верхней кромки около 60 см.

Глава 2. Методика и аппаратура

 

.1 Методика

 

Георадарные работы - это аналог метода t₀ в сейсморазведке. Работы ведутся на постоянном малом расстоянии между источником и приемником. Регистрируются времена прихода отраженных волн, и по этому времени, зная скорость электромагнитной волны, мы можем определить глубину залегания объекта.

 

Похожие работы

1 2 3 > >>