Металлургические процессы при сварке низкоуглеродистых, низколегированных и высоколегированных сталей

Этот один из основных способов сварки высоколегированных сталей толщиной 3 ... 50 мм имеет большое преимущество перед ручной дуговой сваркой

Металлургические процессы при сварке низкоуглеродистых, низколегированных и высоколегированных сталей

Дипломная работа

Разное

Другие дипломы по предмету

Разное

Сдать работу со 100% гаранией
тельно. При электрошлаковой сварке последующая термическая обработка мало изменяет механические свойства металла рассматриваемых зон. Однако нормализация приводит к резкому возрастанию ударной вязкости.

Швы, сваренные на низкоуглеродистых сталях всеми способами сварки, обладают удовлетворительной стойкостью против образования кристаллизационных трещин. Это обусловлено низким содержанием в них углерода. Однако при сварке на низкоуглеродистых сталях, содержащих углерод по верхнему пределу (свыше 0,20%), угловых швов и первого корневого шва в многослойных швах, особенно с повышенным зазором, возможно образование в металле шва кристаллизационных трещин, что связано в основном с неблагоприятной формой провара (узкой, глубокой). Легирующие добавки в низколегированных сталях могут повышать вероятность образования кристаллизационных трещин. Все низкоуглеродистые и низколегированные стали хорошо свариваются всеми способами сварки плавлением. Обычно не имеется затруднений, связанных с возможностью образования холодных трещин, вызванных образованием в шве или околошовной зоне закалочных структур. Однако в сталях, содержащих углерод по верхнему пределу и повышенное содержание марганца и хрома, вероятность образования холодных трещин в указанных зонах повышается, особенно с ростом скорости охлаждения (повышение толщины металла, сварка при отрицательных температурах, сварка швами малого сечения и др.). В этих условиях предупреждение трещин достигается предварительным подогревом до 120-200 0С. Предварительная и последующая термическая обработка сталей, использующихся в ответственных конструкциях, служит для этой цели, а также позволяет получить необходимые механические свойства сварных соединений (высокую прочность или пластичность, или их необходимое сочетание).

Подготовку кромок и сборку соединения под сварку производят в зависимости от толщины металла, типа соединения и способа сварки согласно соответствующим ГОСТам или техническим условиям. Свариваемые детали для фиксации положения кромок относительно друг друга и выдерживания необходимых зазоров перед сваркой собирают в универсальных или специальных сборочных приспособлениях или с помощью прихваток. Длина прихватки зависит от толщины металла и изменяется в пределах 20-120 мм при расстоянии между ними 500- 800 мм. Сечение прихваток равно примерно 1/3 сечения шва, но не более 25-30 мм2. Прихватки выполняют покрытыми электродами или на полуавтоматах в углекислом газе. При сварке прихватки следует переплавлять полностью, так как в них могут образовываться трещины из-за высокой скорости теплоотвода. Перед сваркой прихватки тщательно зачищают и осматривают. При наличии в прихватке трещины ее вырубают или удаляют другим способом. При электрошлаковой сварке детали, как правило, устанавливают с зазором, расширяющимся к концу шва. Фиксацию взаимного положения деталей производят скобами, установленными на расстоянии 500-1000 мм друг от друга, удаляемыми по мере наложения шва. При автоматических способах дуговой и электрошлаковой сварки в начале и конце шва устанавливают заходные и выходные планки.

Сварка стыковых швов вручную или полуавтоматами в защитных газах и порошковыми проволоками выполняется на весу. При автоматической сварке требуются приемы, обеспечивающие предупреждение прожогов и качественный провар корня шва. Это достигается применением остающихся или съемных подкладок, ручной или полуавтоматической в среде защитных газов подварки корня шва, флюсовой подушки и других приемов. Для предупреждения образования в швах пор, трещин, непроваров и других дефектов свариваемые кромки перед сваркой тщательно зачищают от шлака, оставшегося после термической резки, ржавчины, масла и других загрязнений. Дуговую сварку ответственных конструкций лучше производить с двух сторон. Выбор способа заполнения разделки при многослойной сварке зависит от толщины металла и термической обработки стали перед сваркой. При появлении в швах дефектов (пор, трещин, непроваров, подрезов и т. д.) металл в месте дефекта удаляют механическим путем или воздушно-дуговой или плазменной резкой и после зачистки подваривают. При сварке низколегированных и низкоуглеродистых сталей от выбора техники и режима сварки (при изменении формы провара и доли участия основного металла в формировании шва) зависят состав и свойства металла шва.

 

1.3 Общие сведения об электродуговой сварке сталей

 

Электродуговая технология сварки была изобретена в России в 1882 г. Н. Н. Берандосом (сварка угольным электродом) и в 1888-1890 гг. Н. Г. Славяновым (сварка металлическим электродом). Дуговая сварка успешно применяется для восстановления как стальных, так и чугунных деталей. Она выполняется чаще всего путем расплавления электрода и металла свариваемого изделия теплом электрической дуги, температура которой достигает 6000 °С. Таким образом, в месте сварки создается ванночка с жидким металлом, который, охлаждаясь, соединяет воедино края свариваемых поверхностей. При подготовке свариваемых деталей или при подготовке к заварке трещин необходимо выполнить так называемую разделку. Схемы подготовки кромок к сварке приведены на рис. 1.

Рис. 1. Схемы подготовки кромок к сварке

 

Поверхности свариваемых краев должны быть предварительно очищены от грязи, наплывов и коррозии до металлического блеска. Трещину необходимо предварительно «ограничить» сверлением. Образовавшиеся в результате разделки кромок к полости заполняются при сварке металлом электрода.

Дуговая технология сварки обеспечивает прочное соединение, но приводит к деформации свариваемых деталей. Это необходимо учитывать при выборе этого метода восстановления. Сварка может вестись как переменным током, так и постоянным. Обычно для сварки используют аппараты переменного тока: СТШ-260, СТШ-300, СТШ-500, СТШ-500-80 и др. Аппарат СТШ-500-80 наиболее универсальный, а поэтому и наиболее подходящий для ремонтных работ. Для сварки постоянным током используются генераторы ПСО-300, ПСО-500 и выпрямители - селеновый ВСС-300 и кремниевый ВКС-500 и др.

В результате заварки деталь испытывает напряжения, которые, как правило, должны быть сняты. Если можно, свариваемую деталь следует предварительно подогреть, что уменьшает разность температур у места сварки и остальной детали и улучшает качество сварки. Если конструкция такова, что сварка вызывает в ней большие внутренние напряжения, деталь следует отжечь путем нагрева ее до 600-650°С и последующего медленного охлаждения вместе с печью. Дуговой сваркой могут быть восстановлены детали из углеродистых и легированных сталей. Для каждого случая сварки должны быть подобраны соответствующие электроды и режимы ведения процесса. На свойства металла при сварке плохо влияет кислород воздуха, окисляющий металл, и азот. Поэтому принимаются меры для защиты жидкого металла от окисления путем введения в жидкий металл присадок, влияющих на качество шва. Шлак, образующийся при сварке, должен своевременно удаляться. Качество сварного шва зависит от металла электрода и обмазки, соединяющей в себе присадки и среду, обеспечивающую защиту жидкого металла от влияния атмосферного воздуха.

 

1.4 Ручная дуговая сварка

 

Электроды выбирают в зависимости от назначения конструкций и типа стали, а режим сварки - в зависимости от толщины металла, типа сварного соединения и пространственного положения сварки.

Силу сварочного тока определяют по формуле:

св=πdэ2*j/4

 

где dэ - диаметр электрода (электродного стержня), мм; - допускаемая плотность тока, А/мм2.

Рекомендуемые для электрода данной марки значения сварочного тока, его род и полярность выбирают согласно паспорту электрода, в котором приводят его сварочно-технологические свойства, типичный химический состав шва и механические свойства. При сварке рассматриваемых сталей обеспечиваются высокие механические свойства сварного соединения и поэтому в большинстве случаев не требуются специальные меры, направленные на предотвращение образования в нем закалочных структур.

При приближённых подсчётах величина сварочного тока может быть определена по одной из следующих формул:

св=k*dэ Iсв=k1*dэ*1,5 св=dэ*(k2+α*dэ)

 

где dэ - диаметр электрода (электродного стержня), мм; 1, k2, α - коэффициенты, определённые опытным путём:

1=20…25; k2=20; α=6.

 

Техника заполнения швов и определяемый ею термический цикл сварки зависят от предварительной термической обработки стали. Сварка толстого металла каскадом и горкой, замедляя скорость охлаждения металла шва и околошовной зоны, предупреждает образование в них закалочных структур. Это же достигается при предварительном подогреве до 150-200 0С. Поэтому эти способы дают благоприятные результаты на нетермоупрочненных сталях. При сварке термоупрочненных сталей для уменьшения разупрочнения стали в околошовной зоне рекомендуется сварка длинными швами по охлажденным предыдущим швам. Следует выбирать режимы сварки с малой погонной энергией. При этом достигается и уменьшение протяженности зоны разупрочненного металла в околошовной зоне. При исправлении дефектов в сварных швах на низколегированных и низкоуглеродистых сталях повышенной толщины швами малого сечения вследствие значительной скорости остывания металл подварочного шва и его околошовная зона обладают пониженными пластическими свойствами. Поэтому подварку дефектных участков следует производить швами нормального сечения длиной не менее 100 мм или предварительно подогревать их до 150-200 0С.

Ручную дуговую сварку покрытыми электродами низкоуглеродистых сталей выполняют электродами типа Э38, Э42, Э46 со всеми типами покрытий (кислыми, целлюлозными и основными) марок МР-3, СМ-5, АНО-2, ОЗС-3, УОНИ-13/45 и др.

Низколегированные и низкоуглеродистые стали сваривают электродами типов Э42, Э50 с основным покрытием марок УОНИ-13/45

Лучшие

Похожие работы

<< < 1 2 3 4 5 6 7 > >>