Металлорганические соединения

Информация - Иностранные языки

Другие материалы по предмету Иностранные языки

Скачать Бесплатно!
Для того чтобы скачать эту работу.
1. Подтвердите что Вы не робот:
2. И нажмите на эту кнопку.
закрыть



ментов. Гидрирование R3B может служить способом получения гидридов бора и, в частности, диборана:. В2Н6 с R3B; образует равновесные смеси алкилдиборанов RnB2H6-n (п=1-4), состав которых определяется соотношением исходных веществ. Алкилдибораны легко диспропорционируются. Алкилборные кислоты слабее Н3ВО3, арилборные несколько сильнее. Получают их обычно окислением R3B в RB(OR)2 с последующим гидролизом последних, неполным алкилированием (RO)3B и (ROBO)3, гидролизом RBС12. Алкил- и арилборные кислоты легко дают при нагревании соответствующие циклические бороксины (RBO)3; с HgCl2 или HgO образуются ртутьорганические соединения. Диалкилборные кислоты нейтральны по лакмусу. Пиролиз (200) комплексов диборана и алкилдиборанов с аммиаком (или аминами) приводит к неорганическому бензолу бора золу:

 

 

И его алкильным производным. Борорганические соединения известны могут быть получены несколькими способами: 1)Алкилированием галогенидов бора, эфиров борной и метаборной кислот, магний-, цинк-, алюминийорганическими соединениями; конечными продуктами являются триалкилборины R3В (бортриалкилы), однако во многих случаях реакция может быть остановлена на стадии образования алкилгалогеноборинов или соответственно эфиров алкилборных кислот.

2) Взаимодействием ртутьорганических соединений с ВНа13; реакции используется обычно для получения ароматических производных типа АгВНа12 и Аг2ВНа1. R3B получают также из алюминийтриалкилов R3Al и алкилбороксинов (R3BO)3.

3)Присоединением диборана к олефинам с образованием R3В; олефины с внутренней двойной связью дают те же продукты, что и а-олефины.В2Н6 замещает водород в бензоле (100) с образованием (С6Н5)3В.

4)Взаимодействием бензола с ВС13 с образованием последний и с хлорбензолом дает

Борорганические соединения известны применяют главным образом для получения гидридов бора, служащих сырьем для производства высококалорийных топлив для реактивных двигателей; R3B и некоторые другие Борорганические соединения применяются в качестве катализаторов полимеризации ненасыщенных соединений; комплексные соединения типа NaB(С6H5)4 используются в аналитической химии для осаждения ионов К, Рb, Cs, NH4.

Соединения алюминия.

Алюминийалкилы более активно реагируют с водой, кислородом и т. д., органические соединения других элементов третьей группы. Химические свойства соединений элементо II группы. Алкилзамещенные гидроксида алюминия не существуют. Триалкильные производные алюминия могут быть получены различными способами:

1)обработкой алюминий-магниевого сплава алкилгалогенидами:

2)непосредственным взаимодействием алюминия с водородом и олефином (К. Циглер):

Алюминийалкилы - вязкие бесцветные жидкости; низшие члены гомологического ряда ассоциированы (димеры).

Алюминийалкилы быстро окисляются на воздухе, бурно реагируют с водой, часто с воспламенением, многие из них самопроизвольно загораются. Наиболее новое и важное применение алюминийтриалкилов использование их в качестве катализаторов при полимеризации олефинов.

Триэтилалюминий реагирует с этиленом при 100120С с образованием смеси различных соединений алюминия, дающих при гидролизе смесь н-углеводородов с четным числом атомов углерода в молекуле:

Трипропилалюминий с этиленом диет углеводороды с нечетным числом углеродных атомов.

Этим способом получают полиэтилен с молекулярной массой 5000 3000000. Свойства полиэтилена, полученного при низком давлении, отличаются от свойств полиэтилена, полученного при высоком давлении. При более высоких температурах (200С и выше) триалкилалюминий реагирует с олефинами иначе. В зависимости от условии реакции образуются димеры или полимеры, триалкилалюминий регенерируется, играя роль катализатора:

Таким путем из 1-бутена получают 2-этил-1-гексен исходный продукт в синтезе n-ксилола.

 

ОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ ЭЛЕМЕНТОВ IV ГРУППЫ

 

Органические соединения кремния, германия, олова и свинца являются аналогами соединений углерода. Однако, за исключением тетраалкильных соединений, в которых элемент окружен углеводородными радикалами, сходство с чисто углеродными соединениями только формальное. В отличие от металлорганических соединений первых трех групп соединения IV группы электрононасыщены. Они не реагируют с кетонами и не присоединяют галогены или кислород. Кремнийалкилы достаточно стойки, и при их хлорировании замещение при атомах углерода происходит без разрыва кремнийуглеродных связей. Атомы элементов это группы могут соединяться между собой, образуя цепи небольшой длины. Четырехвалентные атомы имеют тетраэдрическое положение валентностей. При наличии в соединениях асимметричных атомов кремния, германия и олова они могут быть разделены на оптические формы.

Кремнийорганические соединения. Кремний расположен в периодической системе непосредственно под углеродом. Поэтому можно было бы ожидать существования кремниевых аналогов всех соединений углерода. Однако, поскольку валентные электроны кремния находятся дальше от ядра и связаны с ним менее прочно, в атоме углерода, кремний является более электронодонорным, или металлическим, элементом по сравнению с углеродом. Поэтому кремний не образует многих типов соединений, известных для углерода. Свойства кремниевых аналогов заметно отличаются от свойств соединений углерода. Энергия связи SiSi меньше, чем связи СС, на 125,6 кДж/моль, а энергия связи SiО выше энергии

s