Металлорганические соединения

Информация - Иностранные языки

Другие материалы по предмету Иностранные языки

Для того чтобы скачать эту работу.
1. Подтвердите что Вы не робот:
2. И нажмите на эту кнопку.
закрыть



и водорода к двойной или тройной связям). Катализаторами служат пероксиды и платипохлористоводородная кислота и др.:

Физические и химические свойства. Тетраалкилсиланы обнаруживают большое сходство с углеводородами. Тетраметилсилан прозрачная жидкость легче воды, т. кип. 26 С. У тетраэтилсилана т. кип.

При хлорировании метилхлорсиланов (при нагревании на свету) образуется хлорметилхлорсиланы. Алкилхлорсиланы обнаруживают только формальное сходство с хлоруглеводородами. Они гидролизуются водой, образуя соответствующие гидроксиды.

Гидролиз триалкилхлорсиланов в присутствии аммиака дает триалкилсиланол:

Силанолы легко теряют воду и образуют силоксаны:

Часто эта реакция идет самопроизвольно, однако для более прочных соединений, таких, как трифенилсиланол, требуется щелочная среда.

Реакция триалкилхлорсиланов с безводным аммиаком или аминами дает силиламины (слазаны), которые легко гидролизуются:

Силанолы не этерифицируются кислотами. При действии на силанолы хлорангидридов кислот получаются не эфиры, а хлорпроизводные, как что происходит и с третичными спиртами:

Получить ненасыщенные соединения при отщеплении воды от силанолов или HCI от алкилхлорсиланов не удалось.

Гидролизом диалкилдихлорсиланов получают силандиолы, нерастворимые в воде, но растворимые в водной щелочи:

Силандиолы легко теряют воду, образуя соединения, которые часто называют силиконами. В результате межмолекулярного отщепления воды происходит конденсация многих молекул и в случае диметилсиландиола образуется бесцветное масло, представляющее собой смесь примерно равных количеств циклических полимеров (циклополисилоксанов) и линейных полимерных диолов:

В 1939 г. К. Л. Андрианов обратил внимание на возможность использования этих масел в качестве электроизоляционных материалов. Эти масла отличаются большой термической стойкостью (250 G) и существенно не изменяют вязкости в интервале температур от -60 до +60 С. Они применяются в качестве смазок специального назначения. При изменении условий приготовления и последующей обработки продукта может быть получен материал со свойствами, напоминающими каучук силиконовый каучук, силастик. Силиконовый каучук, подвергнутый обработке окислителями, образует трехмерную структуру, аналогичную вулканизатам каучука. Силиконовые каучуки обладают высокими электроизоляционными качествами и большой термостойкостью и морозостойкостью. Они сохраняют эластичность в интервале температур от -60 до +200 С. Прочность силиконовых каучуков на разрыв невелика всего 20 30 кг/см" (2 3 МПа), в то время как прочность натурального и некоторых синтетических каучуков около 200 кг/см2 (20 МПа). Введение наполнителей (диоксид кремния) повышает прочность на разрыв до 120 кг/см" (12 МПа).

Алкилтрихлорсиланы при гидролизе

образуют алкилсилантриолы вещества очень нестойкие: в момент образования они легко дегидратируются с образованием трехмерных полисилоксанов:

Полисилоксаны твердые, хрупкие неплавкие смолы, которые широко применяются в качестве термостойкого электроизоляционного материала; изоляция электрических проводов из алкилполисилоксанов выдерживает температуры до 300 С. Использование такой изоляции позволяет уменьшить размеры и массу электродвигателей почти в два раза, что особенно важно в автоматике и реактивной технике. Все кремнийорганические материалы не смачиваются водой и сообщают материалам, которые они покрывают, гидрофобность. В последние годы кремнийорганические соединения получают все более широкое применение в органическом синтезе как промежуточные продукты. Триалкилсилильная группировка используется как защитная группа, которая легко вводится в исходные продукты и легко удаляется из конечных продуктов.

 

Свинецорганические соединения соединения, в которых атом свинца связан с атомами углерода; известны следующих типов:R4Pb, R3РЬХ, R3Pb-PbR3, R2PbX2

RPbO, RPbX3,

Наибольшее значение имеют R4Pb. Для двухвалентного свинца известно всего два-три производных ароматического ряда: Аг2РЬ.

Свинецорганические соединения получают:

1) Типа Alk4Pb и Аг4РЬ с помощью магний и литийорганических соединений:

2RMgX + РЬХ,---->

Часто реакция может быть остановлена на стадии гексаарилдиплумбана, а в некоторых случаях удавалось выделить и нестабильный диарилсвинец.

2) Взаимодействием сплава PbNa с галогеналкилами (технический способ получения тетраэтилсвинца):

4RbNa + 4RXR4Pb +4NaX +ЗРЬ

3) С помощью ртутьорганических соединений, напр.:

это позволяет получить свинецорганические соединения с чувствительными к действию реактива Гриньяра заместителями (напр., NO2, СOOR и др.).

4) Свинецорганические соединения с меньшим числом радикалов из свинецорганических соединений, содержащих четыре радикала:

Свинецорганические соединения менее устойчивы (термически, к действию света, окислителей и минеральных кислот), чем органические соединения олова, сурьмы и мышьяка. PbAlk4 ядовитые жидкости, при нагревании разлагаются с выделением свинца и образованием свободных радикалов, судьба которых может быть различной:

РЬ (СН3)4 часто используют как источник метильных радикалов. РЬАг4 кристаллические вещества, более устойчивы термически, чем их алкильные аналоги, но легче расщепляются кислотами и галогенами. Свинецорганические соединения типа в жирном ряду жидкости, в ароматическом кристаллические вещества. Они присоединяют галогены с разрывом РЬ Pb связи и образованием R3PbX кристаллические плохо растворимых соединений, гидролизующихся с образованием слабых оснований RPbOH. Окиси типа R2PbO нерастворимые порошки, образующие соли с минеральными кислотами. В жидком NH3 свинецорганические соединения типа (R3Pb)2 образуют R3PbNa; соединения эти могут служить для синтеза:

R3PbNa + R'XRPbR'+NaX

Свинецорганические соединения, особенно жирного ряда, очень токсичны. Главное применение нашел тетраэтилсвинец как антидетонационная добавка в легком моторном топливе.