Металловедение и термическая обработка металлов

Вопросы - История

Другие вопросы по предмету История

Скачать Бесплатно!
Для того чтобы скачать эту работу.
1. Подтвердите что Вы не робот:
2. И нажмите на эту кнопку.
закрыть



ляется в первый момент кристаллизации настолько бурно, что температура скачкообразно повышается, приближается к теоретической (кривая 3, рис.3).

Чем больше скорость охлаждения, тем больше величина переохлаждения. Для того, чтобы полностью переохладить металл в жидком состоянии требуются большие скорости охлаждения (миллионы и даже миллиарды градусов в секунду), охлаждение жидкого металла до комнатной температуры следует проводить так, чтобы получить переохлажденный жидкий металл (т. е. металл, не имеющий кристаллического строения) за ничтожную долю секунды. Такой, металл называется аморфным или металлическим стеклом, который начинает применяться на практике.

 

1.3. Какую роль играют несовершенства структуры кристаллов. Какую роль играют дислокации в вопросах прочности и пластичности материала.

 

Встречающиеся в природе кристаллы, как монокристаллы, так и зерна в поликристаллах, никогда не обладают строгой периодичностью в расположении атомов т. е. не являются идеальными кристаллами. В действительности реальные кристаллы содержат те или иные несовершенства (дефекты) кристаллического строения.

Дефекты в кристаллах принято классифицировать по характеру их измерения в пространстве на точечные (нульмерные), линейные (одномерные), поверхностные (двухмерные), объемные (трехмерные).

Точечными дефектами называются такие нарушения периодичности кристаллической решетки, размеры которых во всех измерениях сопоставимы с размерами атома. К точечным дефектам относят вакансии (узлы в кристаллической решетке, свободные от атомов), межузельные атомы (атомы, находящиеся вне узлов кристаллической решетки), а также примесные атомы, которые могут или замещать атомы основного металла (примеси замещения), или внедряться в наиболее свободные места решетки (поры или междоузлия) аналогично межузельным атомам (примеси, внедрения)

Линейные дефекты в кристаллах характеризуются тем, что их поперечные размеры не превышают нескольких межатомных расстояний, а длина может достигать размера кристалла. К линейным дефектам относятся дислокации линии, вдоль и вблизи которых нарушено правильное периодическое расположение атомных плоскостей кристалла. Различают краевую и винтовую дислокации. Краевая дислокация представляет собой границу неполной атомной плоскости (экстраплоскости). Винтовую дислокацию можно определить как сдвиг одной части кристалла относительно другой.

В кристаллах встречаются и так называемые смешанные дислокации. Дислокации не могут обрываться внутри кристалла они должны быть либо замкнутыми, либо выходить на поверхность кристалла. Плотность дислокации, т. е. число линий дислокации, пересекающих внутри металла площадку в 1 см2, составляет 103104 в наиболее совершенных монокристаллах до 1012 в сильно деформированных металлах Дислокации создают в кристалле вокруг себя поля упругих напряжений, убывающих обратно пропорционально расстоянию от них. Наличие упругих напряжений вокруг дислокации приводит к их взаимодействию, которое зависит от типа дислокации и их векторов Бюргерса. Под действием внешних напряжений дислокации двигаются (скользят), что определяет дислокационный механизм пластической деформации. Перемещение дислокации в плоскости скольжения сопровождается разрывом и образованием вновь межатомных связей только у линии дислокации, поэтому пластическая деформация может протекать при малых внешних напряжениях, гораздо меньших тех, которые необходимы для пластической деформации идеального кристалла путем разрыва всех межатомных связей в плоскости скольжения. Обычно дислокации возникают при образовании кристалла из расgлава. Основным механизмом размножения дислокации при пластической деформации являются так называемые источники Франка-Рида. Это отрезки дислокации, закрепленные на концах, которые под действием напряжений могут прогибатся ,испуская при этом дислокации,и вновь востанавливатся.

Обычно упрочненное состояние достигается при взаимодействии дислокации друг с другом, с атомами примесей и частицами другой фазы. Дислокации влияют не только на прочностные и пластические свойства металлов, но также и на их физические свойства (увеличивают электросопротивление, скорость диффузии и т.д.).

Процесс сдвига в кристалле будет происходить тем легче, чем больше дислокации будет в металле. В металле, в котором нет дислокации, сдвиг возможен только за счет одновременного смещения всей части кристалла. В случае, если под действием напряжений дислокации не зарождаются, то прочность бездислокационного металла должна быть равна теоретической.

Существует и другой способ упрочнения металлов. Оказывается, что реальная прочность металлов падает с увеличением числа дислокации только вначале. Достигнув минимального значения при некоторой плотности дислокации, реальная прочность вновь начинает возрастать. Повышение реальной прочности с возрастанием плотности дислокации объясняется тем, что при этом возникают не только параллельные друг другу дислокации, но и дислокации в разных плоскостях и направлениях. Такие дислокации будут мешать друг другу перемещаться, и реальная

прочность металла повысится.

Давно известны способы упрочнения, ведущие к увеличению полезной плотности дислокации; это механический наклеп, измельчение зерна и блоков мозаики, термическая обработка и т. д. Кроме того, известные методы легирования (т. е. внедрение в решетку чужеродных атом

s