Метаболические сдвиги в организме, происходящие вследствие сахарного диабета

Информация - Биология

Другие материалы по предмету Биология

Для того чтобы скачать эту работу.
1. Подтвердите что Вы не робот:
2. И нажмите на эту кнопку.
закрыть



чая механизм влияния амилина на углеводный обмен, T.G.Rink и соав.

  1. установили, что инсулин и амилин влияют на цикл Кори. Если ин-

сулин стимулирует накопление периферических запасов гликагона, то

амилин стимулирует как глинеогенез, так и гликолиз. В скелетных мыш-

цах амилин снижает скорость поглощение глюкозы и накопление глико-

гена, увеличивает гликогенолиз. При этом активность фосфорилазы уве-

личивается в 2 раза, а стимуляция гликогенолиза осуществляется через

цАМФ - независимую протеинкиназу (Балаболкин М.И., 1994).

 

  1. НАРУШЕНИЕ УГЛЕВОДНОГО ОБМЕНА В РЕЗУЛЬТАТЕ

ПАТОЛОГИЧЕСКОЙ ДЕЯТЕЛЬНОСТИ ГОРМОНОВ.

 

Существует два типа клеток, в которых сгорает сахар (глюкоза). Одни

из них глюкоза принимает легко без участия инсулина. Обычно внутри

этих клеток уровень глюкозы почти такой же как и вне клетки. Из таких

клеток состоят наши почки, мозг и кровеносные сосуды.

Клетки другого типа потребляют глюкозу только с помощью инсулина. К

ним относятся клетки мышц и жировой ткани. Инсулин способствует про-

никновению глюкозы внутрь этих клеток, которая затем или используется

для текущих нужд, или накапливается. Без инсулина глюкоза просто не может пройти сквозь стенки клеток и становится недоступной для получе-

ния энергии (Кило И. И др., 1993).

Непосредственным источником энергии является глюкоза при ее окислении. Основное расщепление углеводов происходит в тонком кишеч-

нике, где под влиянием ферментов поджелудочной железы (диастоза, мальтоза, сахароза) они превращаются в моносахариды. Глюкоза, подвер-

гаясь фосфорилированию, служит отправным элементом всех превраще-

ний углеводов - окисления, синтеза из нее гликогена и жира. Схематично

этот процесс можно представить следующим образом:

 

АТФ

Глюкоза + гексокиназа гексо-монофосфат + АДФ

 

Активатором гексокиназы в реакции фосфорилирования глюкозы являет-

ся инсулин. Обогатившись макроэргической фосфатной связью, глюкоза

получает возможность проникнуть в стенку кишечника и т.д.

Для того чтобы проникнуть в клетки почки из портального круга кровообращения, глюкоза вторично подвергается процессу фосфорилиро-

вания. В результате повторного фосфорилирования, происходящего под

влиянием гексокиназы, образуется глюкозо-6-фосфат, что делает глюкозу

вновь физиологически активной. При повторном фосфорилировании, как

и на первом этапе, активность гексокиназы повышается инсулином.

Значение пентозного цикла в обмене веществ велико, ибо этот цикл

представляет собой единственный источник рибозо-5-фосфата, который используется для синтеза РНК. При окислении глюкозы в пенторном цик-

ле образуется большая часть восстановленного НАДФИ + Н+, необходи-мого для синтеза жирных кислот (В.В.Потемкин, 1978).

Причиной возникновения резкой гипергликемии при СД заключает-

ся, как уже указывалось, в недостатке инсулина, обеспечивающего, с од-

ной стороны, нормальную проницаемость клеточных мембран скелетных

и сердечной мышц, а также некоторых других тканей по отношению к глюкозе, с другой стороны, регулирующего активность ряда ферментов печени и уравновешивающего влияния на нее группы диабеточных гормо-

нов.

Наиболее легким нарушением углеводного обмена при диабете является

снижение талерантности к глюкозе на фоне норамльной концентрации ее в крови натощак. В этих условиях принятая глюкоза не вызывает аде-кватной реакции инсулина и поэтому избегает поглощения печенью и мед-

ленее метаболизируется периферическими тканями. С количественной

точки зрения, если у здорового человека печень утилизирует 60% из 100%

принятой внутрь глюкозы, то при нередко выраженном диабете только 40% этого количества метаболизируется печенью.

При абсолютной или относительной недостаточности инсулина в исход-ном состоянии повышается уровень глюкозы натощак. У таких больных

продукция глюкозы обычно не изменена или незначительно повышена

(Wahren J. et all, 1972) тогда как функциональный кругооборот глюкозы

(отношение утилизации глюкозы к ее концентрации в плазме) снижена.

Кроме того, вдвое повышается относительная роль глюконеогенеза в об-

щей продукции глюкозы печенью. Повышение глюконеогенеза при уме-ренной недостаточности инсулина согласуется с тем, что для угнетения

глюконеогенеза требуется сравнительно больше количества инсулина, чем для угнетения гликогенелиза (Felig P. et all, 1971).

В крайней ситуации полной недостаточности функции В - клеток даже вы-

раженная гипергликемия натощак не может вызвать секреторного ответа

этих клеток. В отсутствие сдерживающего влияния, оказываемого исход-ным количеством инсулина продукция глюкозы печенью в 3 раза и более

превышает норму главным образом за счет ускорения глюконеогенеза. Хотя почки также содержат ферменты, необходимые для глюконеогенеза,

при диабете у человека не наблюдается дополнительного поступления глюкозы в кровоток из почек (Felig P. et all, 1975). Клиническим эквива-лентом этих нарушений является выраженная гипергликемия, наблюда-емая при диабетическом кетоацидозе или гиперсмолярной коме, не сопро-

вождаемой кетозом.

Одним из проявлений нарушения углеводного обмена при сахарном

диабете является глюкозерия. В моче здорового человека сахара нет, т.к.

он реабсорбируется почечными канальцами из протекающей через них

первичной мочи. Реабсорбция глюкозы по С.М.Лейтесу может прохо-дить только после ее фосфорилирования, что осуществляется ферментом

гексокиназой. После фосфорилирования глюкоза может поступать из по-чек в кровь лишь в том случае, если на нее воздействует фосфатоза. Меха-

низм действия последней заключается в отщеплении от глюкозы фосфор-

ной кислоты. При инсулиновой недостаточности вследствие нарушения

процессов фосфорилирования глюкозы реабсорбция ее снижается.

Гипергликемия ведет к обезвоживанию тканей. Это происходит вследствие повышения осмотического давления крови и ее влияния на

ЦНС (полидипсия), нарушается нормальный клеточный обмен и усилива-

ется диурез (полиурия) (В.В.Потемкин, 1978).

 

  1. НАРУШЕНИЕ ЛИПИДНОГО ОБМЕНА В РЕЗУЛЬТАТЕ

ПАТОЛОГИЧЕСКОЙ ДЕЯТЕЛЬНОСТИ ГОРМОНОВ.

 

Основным запасным источником энергии в организме являются жиры.

По мере необходимости жиры из жирной ткани поступают в виде неэсте-рифицированных (свободных) жирных кислот (СЖК) в кровь, а затем в пе

чень. После распада в печени жиры используются тканями в качестве энергетического материала. Триглицериды, поступившие в кровь из жиро-

вых депо, комплексируются в печени с А - и В - глобулинами и выходят из

нее в составе А - и В - липопротеидов (В.В.Потемкин, 1978).

Нарушение липидного обмена возникает при диабете чаще вторич-но, в результате первичных изменений в обмене углеводов.

При декомпенсированном диабете часто повышается содержание в

плазме СЖК, триглицеридов и холестерина. Распространенность гипер-гликемии при ИЗСД может достигать 50% (Chase P.H. et all, 1976).

Увеличение концентрации СЖК является следствием их усиленного вы-свобождения из жировых депо, т.к. скорость образования новых жирных

кислот у больных диабетом снижена. Таким образом, при диабете увели-чен приток СЖК из жировых депо в печень и другие ткани. Усиление ли-

полиза происходит в результате выпадения нормального тормозного вли-

яния инсулина на гормончувствительную липозу в жировой ткани. Кроме

того снижение утилизации глюкозы приводит к уменьшению содержания

глицерин-3-фосфата, необходимого для реэстерификации жирных кислот

в самой жировой клетке.

Механизм гиперглицеридемии при диабете более сложен. В норме богатые триглицеридами липопротеины попадают в плазму либо в виде

хиломикронов, образующихся из жира, содержащегося в пище, либо в ви-де липопротеинов очень низкой плотности (ЛПОИП), синтезируемых в пе-

чени и кишечнике. Высвобождение жирных кислот из триглициридов обо-их видов и их поглощение жировой тканью зависят от липопротеиновой

липазы, содержащейся в эндотелии капилляров и активизирующейся ин-сулином. При не леченном или недостаточно компенсированном диабете

снижение активности липопротеиновой липазы обусловливает повыше-ние уровня триглицеридов в плазме, что влияет на содержание хиломик-

ронов, ЛПОНП или чаще обоих кланов липопротеинов. В повышении син-

теза триглицеридов может играть роль и увеличенная доставка жирных

кислот в печень, поскольку в этом органе образование эфиров между жир-

ными кислотами и глицерином при диабете не нарушается. В результате у

больного декомпенсированным диабет