Метаболизм бактериальной клетки

Информация - Биология

Другие материалы по предмету Биология

Для того чтобы скачать эту работу.
1. Подтвердите что Вы не робот:
2. И нажмите на эту кнопку.
закрыть



озо-1,5-бифосфату присоединяется СО2, и в результате образуются две молекулы 3-фосфоглицериновой кислоты. [ Этот же фермент в отсутствие СО2 и в присутствии О2 окисляет рибулозобифосфат до фосфогликолата и 3-фосфоглицерата. Эта реакция участвует в образовании гликолевой кислоты у автотрофных бактерий (в фотодыхании)]. Затем 3-фосфоглицерат восстанавливается до глицеральдегид-3-фосфата за счёт NAD(P)H2 и гидролиза АТР. На последнем этапе цикла глицеральдегид-3-фосфат и его изомер дигидроксиацетонфосфат участвуют в ряде реакций, приводящих к регенерации рибулозобифосфата, и цикл замыкается.

Часть триозофосфатов выводится из цикла и используются для синтеза гексозофосфатов и других сахаров. Ряд промежуточных продуктов также выводятся из цикла и используются для разнообразных синтезов.

Анаэробные автотрофные бактерии располагают двумя другими механизмами ассимиляции СО2. Метанобразующие, ацетогенные и сульфатредуцирующие бактерии, способные использовать в качестве доноров электронов Н2 или СО, восстанавливают СО2 по анаэробному ацетил-СоА пути до ацетил-СоА и пирувата. Зелёные серобактерии фиксируют СО2 исключительно с помощью реакций восстановительного цикла трикарбоновых кислот; СО2 фиксируется благодаря восстановительному карбоксилированию сукцинил-СоА.

 

Фотосинтез.

 

Фотосинтез происходящее в клетках фототрофных организмов преобразование световой энергии в биохимически доступную энергию (АТР) и восстановительную силу [NAD(P)H2], а также связанный с этим синтез клеточных компонентов. Фотосинтетическое фосфорилирование и фотосинтетическое восстановление пиридиннуклеотидов это процессы, ведущие к образованию первых стабильных продуктов фотосинтеза. АТР и NAD(P)H2 используются затем для фиксации СО2 и дальнейших процессов биосинтеза. Организмы, использующие воду в качестве донора электронов, осуществляют оксигенный фотосинтез, идущий с выделением кислорода. Организмы, использующие в качестве донора электронов другие вещества (с более высокой степенью восстановления Н2S, H2, органические вещества), осуществляют аноксигенный фотосинтез, идущий без выделения кислорода. Фотосинтез происходит в мембранах или на их поверхности, а фиксация СО2 в цитоплазме.

Мембрана содержит в себе пигментные молекулы, переносчики электронов и ферменты. Подавляющее большинство молекул (бактерио)хлорофилла, а также дополнительные пигменты(каротиноиды, фикобилипротеины) образуют систему антенны, ответственную за поглощение света и распределение энергии. Незначительная часть молекул (бактерио)хлорофилла выполняет роль фотохимического реакционного центра, в котором протекает собственно фотохимическая окислительно-восстановительная реакция. Пигменты антенн улавливают свет и передают энергию первичному донору реакционного центра [комплекс (бактерио)хлорофилла с белками]. Под воздействием энергии света донор передаёт электрон первичному акцептору реакционного центра и сам окисляется (возникает дырка). Дырка затем заполняется электроном от какого-либо внешнего донора. От первичного акцептора электроны проходят через ряд переносчиков, в конце восстанавливая NADP. При оксигенном фотосинтезе работают две фотосистем, связанные между собой электрон транспортной цепью, важным звеном в которой является пластохинон, который подобно убихинону в дыхательной цепи находится в большом избытке и выполняет функцию депо электронов. Фотосинтетический перенос электронов показан на следующей схеме:

 

 

Fe-S

-белок

цит.bFdNADP

X320 пласто-циклический

хинонпоток электронов

 

цит.f

пластоцианинпигменты

пигментыантеннh

антеннhХл.а.

Хл.а.

2H2O

O2 + 4

 

Две фотосистемы вместе со связывающей их электрон-транспортной цепью обеспечивают направленный поток электронов от воды (с внутренней стороны мембраны) к NADP(с внешней стороны). Перенос 1 электрона через обе фотосистемы сопровождается выведением 2 протонов во внешнюю среду (с участием пластохинона). В результате мембрана аккумулирует энергию в форме протонного потенциала, и эта энергия используется для синтеза АТР с помощью АТРазы или для совершения какой-либо работы.

В аноксигенном фотосинтезе участвует только одна фотосистема: она поддерживает циклический транспорт электронов. В качестве доноров электронов могут использоваться сероводород, сера, тиосульфат, органические соединения (малат, сукцинат и др.) и молекулярный водовод. Фотосинтетический перенос электронов приводит к созданию протонного градиента; для восстановления NADH2 требуется обратный транспорт электронов, протекающий с затратой энергии.

В плазматической мембране галобактерий выделяются тёмно-красные пятна, образованные так называемой пурпурной мембраной. Её цвет обусловлен наличием в ней бактериородопсина. Благодаря этому пигменту на свету создаётся протонный градиент между наружной и внутренней сторонами мембраны, т.е. энергия света превращается в одну из конвертируемых форм энергии.

 

Разложение природных веществ.

 

В аэробных условиях все вещества биологического происхождения подвергаются распаду. Каким бы сложным ни было то или иное вещество, в природе всегда найдётся микроорганизм, способный полностью или частично его расщепить, а продукты этого расщепления будут использованы другими микроорганизмами. Для большинства микроорганизмов основными питательными веществами служат углеводы. Главными составными частями растительного материала являются полисахариды: целлюлоза, крахмал, гемицеллюлозы, пектины, агар, лигнин. Все эти вещества представляют собой макромолекулы. Для их расщепления микроорганизмы выделяют в среду экзоферменты, расщепляющие полимеры до мономеров и низших олигомеров (моно-, ди-, олигосахаров) которые поступают в клетку, где подвергаются дальнейшим превращениям. Аналогично расщепляется хитин животных и грибов. Широко распространены бактерии разлагающие углеводороды; причём, чем длиннее цепь углеводородов, тем активнее они разлагаются. Белки сначала расщепляются внеклеточными протеазами до пептидов, способных проникнуть в клетку, и частично до аминокислот. Пептиды поступают в клетку и гидролизуются внутриклеточными протеазами до аминокислот. Последние либо используются клеткой как таковые для синтеза белка либо подвергаются ряду превращений: декарбоксилированию до биогенных аминов, дезаминированию до оксокислот, трансаминированию с переносом аминогруппы на оксокислоту. Образовавшиеся продукты вовлекаются в промежуточный обмен.

Биосинтетические процессы.

Биосинтез аминокислот. Большинство микроорганизмов способны синтезировать все двадцать аминокислот, из которых строятся белки. Углеродные скелеты аминокислот образуются из промежуточных продуктов обмена. Аминогруппы вводятся в результате прямого аминирования или переаминирования. Перевод неорганического азота в органические соединения происходит всегда через аммиак. Нитраты, нитриты и молекулярный азот предварительно восстанавливаются в аммиак (ассимиляционная нитратредукция) и только после этого включаются в состав органических соединений.

Лишь немногие из аминокислот образуются в результате прямого аминирования свободными ионами . Таким образом обычно аминируется - кетоглутарат до глутамата и пируват до аланина. Все остальные аминокислоты получают свою аминогруппу в результате трансаминирования с одной из первичных аминокислот. Исходным материалом для синтеза аминокислот служат промежуточные продукты обмена (пируват, - кетоглутарат, оксалоацетат или фумарат, эритрозо-4-фосфат, рнбозо-5-фосфат и АТФ). В большинстве случаев аминогруппа вводится только на последнем этапе синтеза. Некоторые аминокислоты образуются в результате ряда превращений других аминокислот, и в этих случаях переаминирования не требуется.

Биосинтез нуклеотидов. Пуриновые и пиримидиновые нуклеотиды являются мономерами нуклеиновых кислот, входят в состав многих коферментов и участвуют в активации и переносе аминокислот, сахаров, липидов и компонентов клеточной стенки. Синтез всех пуриновых нуклеотидов идёт общим путём, разветвляющимся только на стадии инозиновой кислоты, после чего образуется либо адениловая, либо гуаниловая кислота. Общим является и путь синтеза пиримидиновых нуклеотидов; здесь разделение происходит на уровне уридиловой кислоты.

Исходным соединением для образования пентозного компонента нуклеотидов служит рибозо-5-фосфат. Он может образовываться двумя путями: 1)окислительным из глюкозо-6-фосфата через окислительный пентозофосфатный путь и 2)неокислительным из фруктозо-6- фосфата и глицеральдегид-3-фосфата через реакции, катализируемые трансальдолазой и транскетолазой. Рибозо-5-фосфат используется для синтеза нуклеотидов в высокоэнергетической форме в виде фосфорибозилпирофосфата. Восстановление рибозы до дезоксирибозы происходит на стадии рибонуклеотида и осуществляется посредством различных реакций.

Биосинтез липидов. Липиды являются важными компонентами цитоплазматических мембран и клеточных стенок; служат запасными веществами. В бактериальных жирах преобладают длинноцепочечные насыщенные жирные кислоты и ненасыщенные жирные кислоты, содержащие одну двойную связь; ненасыщенные жирные кислоты с несколькими двойными связями и стероиды, видимо, отсутствуют; редки также триглицериды. Большое значение имеют сложные фосфолипиды. Биосинтез жирных кислот с длинной цепью протекает путем конденсации и восстановления ацетатных групп. Для повышения реакционной способности метильная группа ацетилкофермента А сначала карбоксилируется с образованием малонил-СоА:

СНз-СО ~ SСоА + СО2 + АТР + Н2О НООС-СН2-СО ~ SСоА + АDP + Pi

В последующих реакциях конденсации карбоксильная группа снова отщепляется в виде СО2. Синтез жирных кислот