Математическое моделирование биосинтеза продуктов метаболизма

С точки зрения математики, уравнения, в которых в качестве аргумента выступает , предполагают, что совсем неважно, каким образом формируется то

Математическое моделирование биосинтеза продуктов метаболизма

Диссертация

Биология

Другие диссертации по предмету

Биология

Сдать работу со 100% гаранией
есь чаще бывают мультипликативными, чем аддитивными. Приведем зависимость мультипликативного [11] и аддитивного влияния концентрации субстрата по механизму Моно:

(16),

(17).

Применяются также уравнения с не разделяющимися эффектами факторов, например, типа Контуа [10] или неконкурентного торможения продуктом [5]:

(18),

(19).

К сожалению, невозможно изложить все кинетические зависимости биосинтеза продуктов от первичных факторов в столь короткой работе. Данный материал подробно изложен в монографии [14], в которой приведены не только несколько десятков уравнений, но и произведен их анализ.

 

 

 

 

 

Модели, основанные на концепции возраста культуры микроорганизмов.

Для биосинтеза продуктов метаболизма часто бывает недостаточно только благоприятных “внешних” факторов среды. Потому что в биосинтезе участвуют внутриклеточные ферменты микроорганизмов, промежуточные продукты, содержание которых в клетке зависит от предыстории развития культуры. Слишком быстро выросшая культура часто неэффективна с точки зрения биосинтеза продукта. У микробиологов есть выражение “культура ушла в ботву”, что означает биомассы много, продукта мало или вообще нет. Однако, учитывать эти внутриклеточные компоненты при моделировании очень проблемно их трудно измерять и соответственно находить кинетические коэффициенты.

Вместо этого предложены некоторые феноменологические подходы к оценке физиологического состояния микробной биомассы, основанные на оценке возрастного состояния популяции клеток.

Есть несколько подходов для учета возраста культуры. Один из них заключается в определении распределения клеток микроорганизмов по возрастам [12]. Тогда значение удельной скорости биосинтеза продукта можно считать как бы суммой скоростей, даваемых разными возрастными фракциями биомассы:

(20),

гдеΔXi концентрация биомассы i-ой возрастной группы;

qi удельная скорость биосинтеза биомассой i-ой возрастной группы.

При этом, вполне возможно, что значения q1, q2, ... ,qn не будут одинаковыми: “молодежь” не синтезирует нужный продукт, слишком старые клетки тоже.

Японским ученым Аибой был предложен более простой подход, использовать для оценки возраста культуры так называемый средний возраст популяции как параметр, определяющий биосинтетическую активность культуры [13]. Биологически термин вполне понятен это сумма возрастов всех клеток, деленная на их количество:

(21),

гдеλi возраст i-ой возрастной группы.

Если последовательно уменьшать поддиапазоны Δt и ΔΧ, доведя их до бесконечно малых dX и dt, то для среднего возраста можно получить интегральную формулу:

(22),

гдеХ0 начальная концентрация биомассы;

средний возраст культуры в начальный момент культивирования.

Другим способом упрощения возрастной зависимости является разделение возрастного диапазона клеток на 2 класса продуктивный (выше некоторого значения) и не продуктивный [14]:

(24),

гдеλ* возраст зрелости;

qP* удельная скорость биосинтеза клетки, по достижении ею возраста зрелости.

Теперь остается рассмотреть форму зависимости удельной скорости биосинтеза продукта qР от среднего возраста культуры: .

Если зависимость имеет возрастающий характер с насыщением, то зависимость удобно выразить в форме, похожей на уравнение Моно:

(25).

Если, наоборот, она падает с возрастом, то лучше подходит выражение, подобное уравнению Иерусалимского:

(26).

Если зависимость имеет экстремум, то оно может быть выражена, например, с помощью аппроксимирующего полиномиального уравнения [15]:

(27).

Однозначная зависимость между qР и на практике встречается редко, часто зависимость скорости биосинтеза продукта от возраста учитывают в виде мультипликативного сомножителя, сопряженного с основной частью уравнения, учитывающего влияния остальных факторов.

 

 

 

 

 

 

 

 

 

 

Модели деградации (инактивации) продуктов метаболизма.

Не всегда синтезированные продукты метаболизма остаются устойчивыми; часто они настолько нестабильны, что разрушаются уже в процессе самой ферментации. Поэтому, описывая материальный баланс по продукту метаболизма, необходимо учитывать кинетику его инактивации:

(28),

где скорость деградации продукта метаболизма.

При рассмотрении синтеза метаболитов, использовалась удельная скорость, в случае деградации, вводить удельную скорость не корректно, т.к. продукт существует отдельно от биомассы, и его деградация не зависит в общем случае от ее концентрации.

Рассмотрим модели кинетики деградации:

(29),

деградация отсутствует.

(30),

деградация идет с постоянной скоростью. Такое выражение странно выглядит в начале процесса, когда продукта еще нет; из уравнения же получается, что концентрация продукта снижается ниже нуля, что не имеет физического смысла.

(31),

реакция разложения первого порядка, пропорционально количеству образовавшегося продукта [16].

(32),

реакция разложения n-ого порядка, при чем n может быть как больше 1, так и меньше и не быть целым числом.

(33),

реакция разложения зависит не только от концентрации продукта, но и от концентрации биомассы.

(34),

скорость реакции разложения зависит от концентрации биомассы и возрастает с концентрацией продукта до какого-то предела.

Приведенные уравнения инактивации (29)-(34) наиболее распространенные, существуют также и другие более сложные зависимости.

Модель накопления продукта метаболизма на примере лейцина.

L-лейцин- незаменимая аминокислота, необходимая для промышленного получения лизина. Производство лизина базируется на лейцинозависимых штаммах. Годовое производство лизина составляет приблизительно 500000 т/г. Лизин широко используется в с/х в качестве кормовой добавки. Лейцин также применяется в спортивном питании, т.к. является предшественником незаменимых жирных кислот, входящих в состав клеточных мембран.

Элементная формула L-лейцина (L--аминоизокапроновая кислота): C5H10NH2COOH.

Основным способом производства L-лейцина является микробиологический синтез с использованием штамма Corynebacterium glutamicum. Биосинтез проводился в лабораторном биореакторе. В отбираемых пробах определялась оптическая плотность Х, содержание лейцина P и содержание редуцирующих веществ (РВ) по Бертрану S.

Полученные результаты приводятся в таблице 1.

Таблица 1.

 

Простейшим предположением о механизме микробиологического биосинтетического процесса является обобщение данных о том, что биосинтез, с одной стороны, ассоциирован с ростом, а с другой, осуществляется покоящейся клеткой.

Поэтому было решено использовать следующее соотношение (8):

(35),

гдеP концентрация продукта (лейцина), г/л;

aP, bP эмпирические константы.

aP, bP были определены методом наименьших квадратов: aP=13.27, bP=1.249, сумма квадратов отклонений QP составила 0,884, а средняя квадратичная ошибка SP равна ± 0.6648.

 

На рис. 3 показаны экспериментальные значения концентрации лейцина и модельные, из рисунка видно, что модель (8) в данном случае достаточно хорошо описывает биосинтез продуктов метаболизма.

Рис. 2. Графическая интерпретация модели биосинтеза лейцина (35).

 

 

 

Список литературы.

1. Арзамасцев А.А., Андреев А.А Математические модели кинетики микробного синтеза: возможности использования и новые подходы к разработке // Вестн. Тамб. ун-та. Серия: Естеств. и техн. науки. 2000. т.V., № 1 с. 111-130.

2. Renss M. Моделирование и оптимизация процессов // 8th Int. Biotechnol. Symp., Paris 1988. vol. 1. p. 523-536.

3. Zeng An-Ping Кинетическая модель получения продуктов микробных клеток и клеток млекопитающих // Biotechnol. and Bioeng. 1994. vol. 45., N 4. p. 314-324.

4. Vanrolleghem P.A. Структурный подход для выбора среди кандидатов в модель схемы метаболизма и установление неизвестных стехиометрических коэффициентов // Biotechnol. and Bioeng. 1998. vol. 2., N 3. p. 133-138.

5. Перт С.Дж. Основы культивирования микроорганизмов и клеток. М.: Мир. 1978.

6. Luedeking R., Piret E.L. A kinetic study of the lactic acid fermentation: Batch process at controlled pH // J. Biochem. Microbiol. Technol. Eng. 1959. vol. 1., N 4. p. 393-412.

7. Осипов Д.С., Гусельникова Т.В. и др. Математическая модель биосинтеза L-лейцина // Труды МГУИЭ. 2001. т.V. с. 19-23.

8. Mori A., Terui G. Kinetic studies on submerged acetic acid fermentation: Inhibition by ethanol // J. Ferment. Technol. 1972. vol. 50, N 11. p. 776-786.

9. Музыченко Л.А., Валуев В.И. Использование полунепрерывного культивирования микроорганизмов для получения продуктов биосинтеза // В кн.: Теория и практика непрерывного культивирования микроорганизмов. Красноярск. 1978. с. 112-113.

10. Bajpai R.K., Reuss M. A mechanistic model for penicillin production // J. Chem. Technol. and Biotechnol. 1980. vol. 30, p. 332-344.

11. Баснакьян И.А., Бирюков В.В.,

Лучшие

Похожие работы

< 1 2 3 >