Математические модели в естествознании

Изучение нейронных систем -одно из самых романтических направлений научных исследований, поскольку нейронные системы присущи как человеку, так и животным. Самая

Математические модели в естествознании

Вопросы

Математика и статистика

Другие вопросы по предмету

Математика и статистика

Сдать работу со 100% гаранией
получаем при (соответственно ). Аллель A вытесняется из популяции. Если же , то и при . Постепенно вытесняется из популяции аллель a. Какой аллель теряется - зависит от начального состояния популяции. Равновесный полиморфизм оказывается неустойчивым.

Поведение траектории можно изобразить в виде фазовой диаграммы, где вдоль оси абсцисс откладывается значение , а вдоль оси ординат - величина .

Диаграммы a), b), c), d) соответствуют случаям 1- 4.

 

Возрастание средней приспособленности

Выше средней приспособленностью в n -ом поколении была названа величина . Она интерпретировалась, как полная вероятность того, что особь n -ого поколения доживает до этапа размножения. Покажем, что средняя приспособленность -неубывающая функция от номера поколения n. Таким образом, эволюция происходит в сторону возрастания приспособленности популяции, что полностью соответствует теории Ч. Дарвина.

Запишем как функцию от :

и вычислим ее производные:

,

.

Таким образом, экстремальное значение достигается при

(23)

и является максимумом при и минимумом, если .

Рассмотрим первый случай, когда . Квадратичная функция не имеет экстремума на интервале . Действительно, пусть для определенности . Тогда из (23) следует, что экстремальная точка . Для всего интервала производная имеет один и тот же знак. При имеем . Следовательно, функция на интервале монотонно растет. Напомним, что в рассматриваемом случае для траектории отображения также монотонно при . В результате . При этом .

Второй случай подобен первому. Функция на интервале не имеет экстремума и монотонно убывает. Согласно полученным ранее результатам, для траектории отображения имеем: . В результате последовательность оказывается монотонно растущей: . При этом при .

В третьем случае (, ) экстремальная точка является точкой максимума, т.к.

.

На интервале функция монотонна растет, а на интервале монотонно убывает. Одновременно, точка , согласно (18), является устойчивым состоянием равновесия (состояние полиморфизма). Как показано выше, если начальная точка траектории , то для всех ее точек . Тем самым, последовательность монотонно растет. Если же начальная точка , то . Тем не менее, последовательность по-прежнему монотонно растет, в силу монотоного убывания функции на соответствующем интервале.

Четвертый случай (, ) аналогичен предыдущему. Состояние неустойчивого полиморфизма является точкой минимума для средней приспособленности. Траектории (последовательности ) с начальными условиями монотонно убывают. Одновременно, на соответствующем промежутке также монотонно убывает функция . В результате последовательность монотонно растет. Если же , то последовательность монотонно растет, а вместе с ней и последовательность , т.к. функция для монотонно растет.

Рисунок иллюстрирует направление поведение средней приспособленности в рассмотренных случаях.

Отметим, что возрастание средней приспособленности можно доказать непосредственно, не разбирая в отдельности каждый случай. Далее, поскольку средняя приспособленность есть ограниченная величина, можно сделать вывод, что последовательность имеет предел при . Используя этот факт, еще одним способом можно показать, что все траектории отображения сходятся к состояниям равновесия. Такой прием иногда используется для анализа разностных уравнений. Функцию пытаются подобрать, используя специфику уравнения. Часто ее называют функцией Ляпунова. Естественно, что функции Ляпунова не всегда существуют. Как уже отмечалось, поведения траекторий может быть весьма сложным. В частности, может оказаться, что уравнение не имеет устойчивых состояний равновесия.

 

Мутации

Наследственная передача признаков от родителей к потомству -консервативный процесс, хотя эта консервативность не является абсолютной. В противном случае не возможна была бы эволюция. Иногда при воспроизводстве гамет (половых клеток) происходят “ошибки”: Дочерняя клетка несет в себе одну или несколько хромосом, которые не гомологичны ни одной хромосоме родительского организма. Такие изменения называются мутациями. Может оказаться, что в одном или нескольких локусах измененной хромосомы находятся аллели, не встречавшиеся у родителя. Тогда говорят, что произошла генная мутация. Бывают случаи, когда у мутировавшей хромосомы локусы следуют не в естественном порядке, или же присутствуют участки “вырванные” из других, негомологичных хромосом. Возможны и другие отклонения. Например, отсутствие части локусов. В этом случае говорят о хромосомных мутациях. Ниже рассматриваются только генные мутации. Отметим, что генные мутации могут возникать спонтанно вследствие молекулярных изменений. Кроме того мутации индуцируются ультрофиолетовым, ренгеновским или радиоактивным излучением. Они могут происходить также в результате воздействия на организм химических веществ, называемых мутагенами (например, иприт).

Генные мутации оказывают на организм самые различные воздействия: от едва заметного до летального. Вред, причиняемый организму мутациями, часто зависит от конкретных условий. Например, у мухи дрозофилы существует класс мутаций, называемых “температурочувствительными”. При температуре от до муху, гомозиготные по таким мутациям, живут и размножаются более менее нормально. Однако, при температуре около эти мухи погибают, тогда как мухи обычного типа продолжают функционировать нормально.

Вновь возникающие мутации, как правило, вредны для организма. С одной стороны, мутации происходят независимо от того, приносят они организму вред или пользу. В то же время, аллели, существующие в популяции, уже подверглись естественному отбору. Если они поддерживаются в популяци со значительной частотой, то лишь потому, что повышают, или когда -то повышали приспособленность носителей этих аллелей по сравнения с носителями альтернативных аллелей. Только что возникающие мутации, как правило, уже встречались в истории популяции. Если они не поддерживаются в популяции со значительной частотой, то это означает, что они не приносят пользы своим обладателям.

Иногда, однако, новые мутации могут увеличивать приспособленность организмов. Например, если популяция осваивает новую территорию, или, если резко меняются внешние условия, предъявляющие популяции новые требования. В экстремальных условиях приспособленность организмов оказывается ниже оптимальной, и новые мутации могут оказаться полезными. Таким образом, результат мутаций для организмов зависит от условий обитания. Например, считается, что повышенное содержание меланина в кожном покрове (темная кожа) полезно для людей, населяющих тропическую Африку. Темная кожа лучше защищает от ультрофиолетового излучения. Наоборот, для жителей севера, где освещенность мала, светлая кожа способствует синтезу витамина D.

Вероятность того, что в гамете в конкретном локусе конкретной хромосомы появился аллель, не встречавшийся у родителя, называется темпом мутирования гена. Темп мутирования бактерий и других микроорганизмов обычно выше чем многоклеточных организмов. Он весьма сильно варьируется от гена к гену и от организма к организму. Для человека и других многоклеточных организмов показано, что мутации (в отдельном локусе) возникают с частотой .

Пусть темп мутирования гена суть . Все диплоидные организмы образуются от слияния двух гамет. Вероятность того, что у данной особи в том или ином локусе возникает мутация суть , т.е. она приближенно равна удвоенному значению темпа мутации. Таким образом, эта вероятность весьма мала. Однако, вероятность того, что данная особь окажется носителем мутации, возникшем где -либо в генном наборе, уже не столь мала. В генотипе человека имеется порядка локусов. Предположим что темп мутирования для генов человека . Число мутаций распределено по биномиальному закону. Математическое ожидание числа мутаций суть . Иными словами, каждый человек в среднем имеет два аллеля, отсутствовуюших у родителей.

Возникает некоторое противоречие. С одной стороны в целом мутации вредны. С другой стороны практически все люди являются носителями мутаций. В связи с этим обсудим судьбу единичной мутации в модельной популяции, целиком состоящей из особей генотипа . Пусть в единственной гамете произошла мутация аллеля в . Тогда в нулевом поколении появляется одна и только одна особь генотипа . При скрещивании с особью генотипа получаем , т.е. каждый потомок этой пары равновероятно относится к генотипам и . Если появится только один потомок, то вероятность утраты аллеля -мутанта будет равна 0.5 (потомок принадлежит генотипу ). Если в первом поколении появилось потомков, то вероятность утраты аллеля суть . Для расчета полной вероятности потери аллеля в первом поколении неоходимо знать вероятность появления потомков. Часто предполагают (это не бесспорно), что достаточно хорошим приближением для распределения числа потомков является распределение Пуассона. Предположим, что среднее число потомков на семью равно двум. Тогда вероятность появления потомков суть . Полная вероятность потери аллеля мутанта в первом поколении будет равна

.

Если аллель не потерян в первом поколении, то он может быть потерян во втором поколении. Вычислим вероятность потери аллеля за два поколения. Пусть в результате скрещивания особей и в первом поколении появилось потомков. Вероятность того, что потомков будут относиться к генотипу суть (биномиальное распределение). Будем считать, что особи первого поколения скрещиваются только с особями генотипа (генотип редок). Вероятность того, что ни одна из особей первого поколения генотипа не

Похожие работы

<< < 4 5 6 7 8 9 10 11 12 > >>