Математические модели в естествознании

Изучение нейронных систем -одно из самых романтических направлений научных исследований, поскольку нейронные системы присущи как человеку, так и животным. Самая

Математические модели в естествознании

Вопросы

Математика и статистика

Другие вопросы по предмету

Математика и статистика

Сдать работу со 100% гаранией
аком -то смысле классификацию, должны быть соответствующим образом выбраны вектор синаптических весов и пороговое значение . Процедура выбора этих параметров называется обучением нейрона. Различают обучение с учителем и без учителя.

Задача обучения с учителем ставится следующим образом. Задаются два набора входных векторов и . Они называются эталонными векторами или паттернами, а также образами. Требуется определить вектор синаптических весов и порог так, чтобы выходной сигнал нейрона в ответ на входные векторы был равен единице, а на векторы -нулю. Тем самым, обучение с учителем предполагает, что для каждого эталонного входного вектора заведомо известен ответ нейрона. Эталон и желаемый ответ называются обучающей парой.

Несмотря на многочисленные прикладные достижения обучение с учителем критикуется за свою биологическую неправдоподобность, поскольку совершенно не понятно откуда могут появиться желаемые ответы. При обучении без учителя заранее неизвестно разбиение эталонов на подмножества. До обучения невозможно предсказать в какой класс попадет каждый конкретный эталонный вектор. В процессе обучения выделяются статистические свойства обучающей последовательности и вырабатываются правила классификации. Естественно идея, на которой основаны правила, априорно заложена в процесс обучения. Например, эталонные векторы усредняются по координатам. Если эталонный вектор находится от усредненного не слишком далеко, то он относится к первому классу, а иначе -ко второму. Постановка задачи об обучении без учителя выглядит несколько расплывчатой. Однако в ряде случаев она успешно решена.

Различают также внешнее и адаптивное обучение. В первом случае синаптические веса вычисляются неким внешним устройством, а затем импортируются в синапсы. При адаптивном обучении веса подстраиваются в процессе функционирования сети, которой предъявляется обучающая последовательность эталонов. Многие авторы считают механизм адаптации неотъемлемым атрибутом нейронов. Внешнее обучение позволяет понять, во -первых, возможна ли вообще интересующая нас классификация для данной обучающей последовательности. Во -вторых, позволяет, не задумываясь о возможных механизмах адаптации, разумно выбрать синаптические веса для изучения вопроса о функционировании нейронов, объединенных в сеть.

После завершения процесса обучения нейрон осуществляет классификацию векторов эталонной последовательности, т.е. запоминает для каждого вектора класс, к которому тот относится. Кроме этого, произвольный входной вектор нейрон относит к определенному классу, т.е. обобщает классификацию (принцип сортировки) эталонной последовательности на произвольный образ.

Рассмотрим вопрос о разрешимости задачи обучения с учителем в частном случае, когда второе множество состоит из единственного представителя . Геометрически это означает, что строится гиперплоскость, которая отделяет векторы от нуля, т.е. решается задача об отделимости. Отметим, что для бинарных векторов, координаты которых равны либо нулю, либо единице, задача об отделимости всегда разрешима. В качестве нормального вектора можно взять, например вектор и положить для порогового значения . Нижеследующие построения на используют предположения о бинарности векторов.

Легко понять, что задача об отделимости разрешима в том и только том случае, когда выпуклая оболочка векторов не содержит нуля (отделена от нуля). Напомним, что выпуклой оболочкой векторов называется множество , состоящее из векторов: , где и . Пусть множество отделено от нуля и -его ближайшая к нулю точка, т.е. по всем . Здесь, как обычно, . Положим и выберем произвольно . Вектор -искомый синаптический вектор, а -пороговое значение для нейрона, реагирующего на входные векторы выходным сигналом , а на вектор -сигналом .

Задача о нахождении вектора, на котором реализуется минимальное расстояние от нуля до выпуклой оболочки сама по себе весьма сложна. Если число векторов не превышает размерность пространства и сами они линейно независимы, то отделяющую гиперплоскость можно построить другим способом. Достаточно провести через векторы какую-нибудь не содержащую ноль гиперплоскость, а затем сдвинуть ее по направлению нормали ближе к нулю. В качестве вектора синаптических весов следует взять нормальный к

гиперплоскости вектор, направленный в полупространство, не содержащее ноль.;Нормальный вектор к гиперплоскости, содержащей векторы строится конструктивно. Выбор вектора будет однозначным (с точность до множителя), если предполагать, что он принадлежит подпространству, порожденному векторами .

При построении будем использовать алгоритм Шмидта. Он позволяет по последовательности линейно независимых векторов построить последовательность ортогональных между собой векторов, обладающих следующим свойством. Вектор принадлежит подпространству, порожденному векторами и ортогонален всем векторам, расположенным в подпространстве, порожденном векторами . Последовательность строится рекуррентно. Положим . Вектор представим в виде: . Из условия получим: . Далее полагаем . Вектор ортогонален любому вектору из подпространства, порожденного векторами , которому принадлежат векторы . Следовательно и . Учитывая ортогональность векторов , получаем: , . На - ом шаге алгоритма полагаем

. (15)

Из условия в силу ортогональности векторов находим . Отметим важное обстоятельство, что

. (16)

Действительно, из (15) следует:

 

Пусть векторы , где линейно независимы. Построим проходящую через них гиперплоскость , т.е. такую гиперплоскость, для которой при всех . Используя алгоритм Шмидта, ортогонализируем последовательность векторов (легко видеть, что они линейно независимы). Пусть последний элемент последовательности суть . Это и есть искомый нормальный вектор. Действительно, по построению для . Таким образом, для всех . В силу (16) получаем . Используя это равенство, уравнение гиперплоскости можно переписать в виде: .

Зафиксируем произвольно . Гиперплоскость отделяет векторы от нуля. Действительно, .

Рассмотрим задачу о разделении гиперплоскостью множеств векторов и , для . Она разрешима в том и только том случае, когда выпуклые оболочки и соответственно векторов и не пересекаются. Пусть и - векторы, на которых реализуется минимальное расстояние между точками выпуклых оболочек и . Тогда разделение множеств осуществляет любая гиперплоскость, которая ортогональна отрезку, соединяющего векторы и и проходит через его внутреннюю точку.

Нахождение векторов и - сложная задача. Разделяющую гиперплоскость можно легко построить, если число и векторы , линейно независимы (можно вычитать любой фиксированный вектор , или ). Рассмотрим последовательность векторов , , . Они линейно независимы. Используя алгоритм Шмидта, по данной последовательности построим ортогональную последовательность. Пусть - последний вектор, полученный в процессе ортогонализации. По построению для , для . Из равенства (16) следует, что . Тем самым, , . Кроме того, . Обозначим: и . Пусть . Гиперплоскость разделяет векторы и . Действительно, , .

Отметим, что рассмотренный алгоритм выбора синаптических весов, основанный на ортогонализации входных векторов, - пример внешнего обучения нейрона Мак-Каллока Питтса.

 

Наследование признаков, сцепленных с полом

Хромосомный набор женских особей состоит из пар гомологичных хромосом. Мужские особи имеют две хромосомы (обозначим их как X и Y), которые не гомологичны ни одной другой хромосоме и, естественно, между собой. При этом хромосома X любой мужской особи имеет аналог у всех женских особей (хромосомы различаются визуально), а хромосомы Y у женских особей отсутствуют. Отсюда следует вывод, что пол оределяется хромосомной парой XY. Женские особи имеют две хромосомы X, а мужские имеют как хромосому X, так и хромосому Y. Мать передает своим детям хромосому X. От отца дочери переходит хромосома X, а сыну - хромосома Y. Для мужских особей аллель, расположенный в локусе хромосомы X, в принципе не имеет дополнения до аллельной пары. Относительно таких аллелей мужская особь не является ни гомо, ни гетерозиготной. О таких особях говорят, что они гемизиготны по соответствующим генам.

Гены расположенные в локусах хромосом X и Y, называются сцеплеными с полом. Они были открыты в 1910 г. Т.Морганом. Эксперименты проводились с мухами дозофилами. Обычно цвет глаз у этих мух - красный, реже встречаются мухи с белыми глазами. Т.Морган скрещивал красноглазых самок с белоглазами самцами. Потомство в первом поколении было красноглазым. Внешне ситуация полностью аналогична той, что рассматривалась Г.Менделем. Скрещивание представителей двух разных гомозиготных генотипов приводит к появлению гетерозиготных особей. Поскольку все мухи в первом поколении имели краные глаза, этот цвет является доминантным. Согласно Г.Менделю во втором поколениии этот цвет глаз должен наблюдаться с вероятностью , а белый с вероятность . Это должно относиться как к самцам, так и к самкам.

Результаты опытов Т.Моргана оказались иными. Во втором поколении действительно у мух наблюдались красные глаза. Однако, половина самцов имели красные, а вторая половина - белые глаза. Поскольку женские и мужские особи отличаются наборами хромосом X и Y, следует предположить, что аллель ответственный за цвет глаз располагается в локусе одной их них. Таковой не может быть хромосома Y, так как она отсутствует у женских особей. Следовательно, соответствующий ген раположен в локусе хромосомы X. Обозначим аллель, обуславливающий красный цвет глаз как A, а белый - как a. Существует три женских генотипа AA, Aa, aa и два мужских: A и a. Скрещивание самок дрозофил генотипа AA и самцов генотипа a приводит к появлению в первом поколении потомства с крас

Похожие работы

<< < 1 2 3 4 5 6 7 8 9 > >>