Математические модели в естествознании

Изучение нейронных систем -одно из самых романтических направлений научных исследований, поскольку нейронные системы присущи как человеку, так и животным. Самая

Математические модели в естествознании

Вопросы

Математика и статистика

Другие вопросы по предмету

Математика и статистика

Сдать работу со 100% гаранией
ется суммой Пирсона. Оказывается, что с ростом n распределение статистики S стремится к предельному распределению с m-1 степенями свободы, не зависящему ни от n, ни от чисел . Для любого e >0 можно указать практическую границу такую, что

.

Другими словами, неравенство > практически невозможно. Число e называется уровнем значимости.

Зададимся уровнем значимости e =0.05, который очень популярен в биологии. В рассматриваемом случае число степеней свободы m-1=1. Распределение суммы Пирсона для столь большого числа, как n=7 324 практически не отличается от распределения с одной степенью свободы. По таблицам определяем » 3.84. Вычислим сумму Пирсона:

 

Так как сумма Пирсона меньше , то нуль- гипотеза хорошо согласуется с результатами эксперимента. Получаем веские основания считать, что закон Менделя справедлив.

В генетике развит некий формализм, позволяющий быстро выводить закономерности. Аллельные пары представляют в виде:

, , ,

Скрещивание генотипов обозначается знаком '´ ' -умножения. Скобки в формулах раскрываются по привычным правилам и знаки умножения опускаются. Скрещивание гетерозиготных растений описывается формулой:

 

Полученная формула утверждает, что генотипы AA и aa возникают при скрещивании с вероятностью 1/4, а генотип Aa с вероятностью 1/2. Так как генотипы AA и Aa обладают гладкими семенами, то 3/4 потомства имеют гладкие семена, а 1/4 - морщинистые семена (генотип aa).

Решим простую задачу о скрещивании генотипов Aa и aa:

 

Таким образом, половина генотипов будет гетерозиготными, а половина гомозиготными.

Большинство признаков генотипа контролируется более чем двумя аллелями. Такие аллели называются множественными. Такие аллели в любом непарном сочетании могут находиться в любой клетке, так как только две аллели одного гена могут одновременно присутствовать в генотипе. Такие генотипы называются диплоидными. Полиаллельными являются гены, контролирующие группы крови. Группа крови человека зависит от присутствия либо отсутствия в эритроцитах специфических белков (A и B). Существуют четыре группы крови: Группа крови A с генотипами AA и AO (группа крови содержит белок A), группа крови B с генотипами BB и BO (содержит белок B), Группа крови AB (содержит оба белка), группа крови OO (отсутствие белков A и B). Таким образом, группа крови контролируется тремя аллелями A, B, O одного гена. Аллели A и B -доминанты по отношению к O. В присутствия аллелей A и B доминантность отсутствует. Таким образом группы крови определяются шестью генотипами AA, AO, AB, BB, BO, OO.

 

Закон Харди- Вайнберга

В законе Харди -Вайнберга речь идет о частотах генотипов в популяциях. Этот закон сформулировали в 1908 г. независимо друг от друга английский математик Дж.Харди и австрийский врач В.Вайнберг. Рассматривалась следующая задача. Известны частоты генотипов в двухаллельной популяции в нулевом поколении. Требуется проследить изменение частот от поколения к поколению.

Двухаллельная популяция состоит из генотипов: AA, Aa, aa. Их частоты в нулевом (начальном) поколении обозначим через u(0), 2v(0), w(0). Естественно, что u(0)+2v(0)+w(0)=1. Скрещивание предполагается случайным. Удобно следить за эволюцией частот с помощью следующей схемы.

Нулевое поколение

Генотипы Частоты генотипов

AA u(0)

Aa 2v(0)

aa w(0)

Гаметы Частоты гамет

A; p(0)=u(0)+v(0)

a q(0)= v(0)+w(0)

(менделевское формирование гамет)

Первое поколение

Генотипы Частоты генотипов

AA

Aa ;

aa

Гаметы Частоты гамет

A

a;

;Таким образом, частоты гамет не меняются от поколения к поколению. Дальнейшее скрещивание не меняет и частоту зигот.

Второе поколение

Генотипы Частоты генотипов

AA

Aa ;

aa

Частоты зигот устанавливаются в первом поколении и больше не меняются.

Закон Харди-Вайнберга состоит из следующих двух утверждений.

1. Частоты гамет (аллелей) не меняются от поколения к поколению.

2. Равновесные частоты генотипов достигаются за одно поколение. В популяции поддерживается соотношение между гомозиготными и гетерозиготными организмами:

.

Закон Харди-Вайнберга распространяется на любое число аллелей . Очевидно, что число гомозигот суть m, а гетерозигот . Общее число зигот будет . Рассуждения для многоаллельного случая полностью аналогичны предыдущему.

Нулевое поколение

Генотипы Частоты генотипов

 

 

Гаметы Частоты гамет

 

Первое поколение

Генотипы Частоты генотипов

 

 

Гаметы Частоты гамет

 

Таким образом, частоты гамет не меняются от поколения к поколению. Дальнейшее скрещивание не меняет и частоту зигот.

Второе поколение

Генотипы Частоты генотипов

 

 

Для всех последующих поколений частоты генотипов остаются такими же: , . Это и есть закон Харди -Вайнберга для полиаллельного локуса.

Обсудим некоторые аспекты закона Харди -Вайнберга. В случае доминирования аллеля A над a наблюдаются лишь фенотипы {AA, Aa}, {a,a}. В силу закона Харди -Вайнберга их вероятности равны

 

где -частота рецессивного аллеля a.

Если рецессивный аллель -редкий (), то соответствующий фенотип наблюдается еще реже. Частота наблюдения альбиносов (генотип aa, он же - фенотип) . Это - экспериментальный факт. В силу закона Харди -Вайнберга, скрытые носители рецессивного аллеля (генотип Aa) встречаются гораздо чаще:

.

Если доминантный аллель является редким: , то частота его проявления примерно вдвое больше:

.

Интересная ситуация складывается сейчас в человеческой популяции. Существуют рецессивные летальные аллели (генотип aa нежизнеспособен). Примером может служить наследственная болезнь фенилкотонурия (ФКУ). Сейчас найдены способы ее лечения. Выздоровевшие люди могут давать потомство и передавать ему аллель ФКУ. Тем самым частота летальных генов будет возрастать.

Сделаем некоторые замечания о математических аспектах закона Харди -Вайнберга. Обозначим частоты генотипов AA, Aa, aa через . Здесь и

.

Эти соотношения выделяют в трехмерном пространстве треугольник. В следующем поколении частоты выражаются через частоты по формулам:

 

(1)

 

Формулы задают отображение треугольника в себя, которое назовем оператором эволюции и обозначим через V. Закон Харди -Вайнберга означает, что

. (2)

Эта формула отражает принцип стационарности, который С.Н. Бернштейн возвел в ранг закона.

Основная проблема, которой занимался С.Н. Бернштейн, - выявление всех законов наследования, подчиненных закону стационарности. Он дал ее полное решение для популяций, состоящих из трех генотипов, а также изучил некоторые случаи большего числа генотипов. Среди них пример популяции с m -аллельным геном. Пусть его аллели . Генотипы популяции: , при этом . Обозначим частоты генотипов в текущем поколении через . Неотрицательные числа очевидно удовлетворяют соотношению:

.

Пусть частоты генотипов в следующем поколении. Оператор эволюции имеет следующий вид:

 

.

Из закона Харди -Вайнберга для полиаллельных популяций следует, что для данного эволюционного оператора также выполнен принцип стационарности (2).

В одной из работ С.Н. Бернштейна рассматривался так называемый кадрильный закон наследования, генетическая интерпретация которого принадлежит Ю.И. Любичу. Введем два вида "женских " X, x и два вида "мужских" ген Y, y. Будем считать, что могут существовать лишь четыре генотипа: XY, xy, Xy, xY, которым присвоим номера 1, 2, 3, 4. Остальные мыслимые комбинации генов запретим. Частоты генотипов в нулевом поколении обозначим через , а в следующем -через . Поскольку при образовании зиготы объединяется одна женская и одна мужская гаметы, то следует говорить о частотах гамет X и x среди женских и о частотах гамет Y и y среди мужских. Частоты женских гамет в нулевом поколении:

, .

Частоты мужских гамет:

.

Частоты генотипов в первом поколении:

 

.

Отсюда получаем:

 

 

 

 

Данное отображение и изучал С.Н. Бернштейн. Частоты генов в первом поколении

 

(аналогично для других частот), т.е. сохраняются.

С.Н. Бернштейн показал неизбежность концепции гена в условиях Менделя. Сформулируем этот результат. Обозначим через вероятность появления потомка у родителей и . Генотип называется исчезающим, если появление потомка у любой пары родителей равно нулю.

Теорема. Если в трехмерной популяции

 

все генотипы не исчезающие и , (при скрещивании первого со вторым получается только третий), то популяция менделевская.

Вернемся еще раз к вопросу о группах крови. В 1925 г. Ф. Бернштейн выдвинул гипотезу, что группа крови определяется тремя аллелями A, B, O одного локуса с доминированием A и B над O (в случае присутствия A и B доминантность отсутствует). Фенотипы: {AB}, {AO, A

Лучшие

Похожие работы

< 1 2 3 4 5 6 > >>