Автомобілі з гібридною трансміссією і комбінованою енергетичною установкою

Крутний момент, Н·мККД, %Потужність, ВтВхідні сер. знач.Вихідні сер. знач.Кон-вертерЕл. двигун-інвер-торРазомВхіднаВихіднаМеха-нічнаНапру-га, ВСтрум,АНапру-га, ВСтрум,А10,0097,785,283,21888184415712328,62369,320,0098,186,885,136903621314223216,223516,930,0098,491,790,252225138471223222,823523,240,0098,791,690,469516860628323230,223530,250,0098,790,389,188138695785423238,623438,260,0098,691,590,21044610295942523245,323446,270,0098,692,190,812104119341099623252,523454,580,0098,590,889,514046138381256623260,923363,790,0098,288,687,116240159551413723270,523374,6100,0098,186,785,018470181181570823180,423287,2Крутний момент, Н·мККД, %Потужність, ВтВхідні сер. знач.Вихідні сер. знач.Кон-вертерЕл.

Автомобілі з гібридною трансміссією і комбінованою енергетичною установкою

Дипломная работа

Транспорт, логистика

Другие дипломы по предмету

Транспорт, логистика

Сдать работу со 100% гаранией
так, щоб була змога контролювати викиди транспортного засобу при різних циклах руху. Дослідження гібридної системи електроприводу вимагає контролю зусиль, що створюються додатковими електричними машинами, які входять до складу транспортного засобу Крім цього дослідження вимагають дуже точних силових вимірювань, щоб повністю охарактеризувати робочі характеристики КЕУ. Лабораторна установка для дослідження гібридної системи електроприводу визначає струм і напругу в різних точках системи. На рисунку 3.1 зображено схему елементарної електричної системи Пріус і розміщення встановлених давачів.

 

Рисунок 3.1 Розміщення давачів при дослідженні

Залежність даних, що визначаються в процесі дослідження, від часу наведено на рисунку 3.2. Ця характеристика показує потік потужності в різних частинах гібридної системи електроприводу зі зміною швидкості транспортного засобу, вказаної на графіку. З графіка можна побачити, що потужність ДВЗ зростає, коли транспортний засіб пришвидшується до високих швидкостей і знижується, аж до нуля, коли швидкість транспортного засобу постійна, що дозволяє таким чином приводити в рух автомобіль від електродвигуна без допомоги ДВЗ. На найвищих швидкостях ДВЗ і електродвигун одночасно віддають потужність для приводу транспортного засобу. Наступне дослідження, яке мало метою показати ідентичність результатів при тих же дослідженнях, показало можливість зміщення і невідповідність даних. Тому для повного описання робочої характеристики транспортного засобу необхідні додаткові дослідження.

 

Рисунок 3.2 Типові силові вимірювання при зміні швидкості

 

Рисунок 3.3 Результати вимірювань при певній швидкості

Інша частина даних, які показують відношення між потужністю батареї, потужністю підвищувального конвертера і потужністю електродвигуна, показана на рисунку 3.3. Ці дані були отримані при вимкнені допоміжного обладнання, так як батарея, підвищувальний конвертер і електродвигун при цьому безпосередньо звязані одне з одним. З графіка видно, що підвищувальна потужність дуже близька до потужності батареї; це пояснюється низькими втратами в підвищувальному конвертері. Потужність електродвигуна повинна бути приблизно такою ж, але трохи нижчою із-за втрат в інверторі електродвигуна. З цього можна зробити певні грубі висновки, але більш детальну інформацію можна отримати при додаткових дослідженнях.

Хоча цей графік дає певні результати, але невеликі розбіжності в даних і інші фактори вказують на необхідності регулювання давачів і системи отримання і збору інформації для подальших досліджень

 

3.1.2 Дослідження, що характеризують роботу підвищувального конвертера

В гібридній системі електродвигун отримує більшість своєї потужності від генератора і решту від батареї через інвертор. Таким чином силова оцінка конвертера це менше ніж половина в оцінці електродвигуна.

Цікаво те, як напруга генератора, яка збільшується із швидкістю транспортного засобу, зрівнюється з напругою конвертера, що керується електронним контрольним приладом. На рисунку 3.4. показано залежність напруги на генераторі від його швидкості обертання. Крім цього тут вказано швидкість транспортного засобу, що дає змогу зробити порівняння з попередніми дослідженнями. Відмітимо, що максимальна напруга на генераторі, яка співпадає з межами регулювання конвертера, знаходиться в межах 25-65 миль/год.

Рисунок 3.4 Залежність напруги генератора від швидкості

 

При дослідженнях конвертера отримані дані, які допомогли охарактеризувати дію конвертера підвищення напруги відносно швидкості і пришвидшення транспортного засобу Дія підвищення напруги тут не показана, але зрозуміло, що функція зарядки акумуляторної батареї потребує зменшення вихідної напруги генератора і електродвигуна, оскільки їх робочі напруги є вище ніж напруга 201,6 В батареї.

Наступні дослідження проводяться за пятьма параметрами: вихідними напругою і струмом від конвертера, положенням педалі акселератора, положенням педалі гальма, швидкістю транспортного засобу Відмітимо, що позитивний струм обертає електродвигун і негативний струм заряджає батарею. Одиниці виключаються, так як метою є якісне порівняння. Рисунок 3.5 показує дані від їздового циклу, де транспортний засіб було пришвидшено до 31,5 миль/год, з супроводжуючими гальмуваннями. Частина осі Y розширена для кращої наглядності. Як показано на графіку, є три величини, які так чи інакше впливають на зміну підвищення напруги і вихідного струму. При максимумах пришвидшення напруга залишалась піднятою для різних періодів, а потім падала. Два взірця досліджувалися в період пришвидшення і один в кінці пришвидшення. Дані, здається, не забезпечують повну картину того, що відбувається, і це не дивно, так як алгоритм електронного контрольного приладу невідомий.

Відмітимо, що при гальмуванні відбувається підвищення напруги до максимальної 500В, що підтримує заряджання акумуляторної батареї. Так як подальші дослідження не будуть включати оцінку цього процесу, то періоди гальмувань будуть виключені із їздового циклу.

 

Рисунок 3.5 Дані їздового циклу при дії конвертера підвищення напруги

 

На рисунку 3.6 показано другий період їздового циклу і підняття рівня напруги, яке відповідає швидкому пришвидшенню, що супроводжується розширеним проміжком часу в мінімальній напрузі (тільки вище 200В). Це приводить до висновку, що скачки напруги з невідомих причин, не мають ніякого відношення до дії системи інвертор/електродвигун.

 

Рисунок 3.6 Другий набір даних їздового циклу при дії конвертера підвищення напруги

Рисунок 3.7 Третій набір даних їздового циклу при дії конвертера підвищення напруги

 

На рисунку 3.7 зображено третій період їздового циклу з швидким пришвидшенням, що супроводжує рух транспортного засобу при швидкості вище 40 миль/год. Ці дані показують довготривале підвищення напруги вище 300В і максимальної напруги 500В в період пришвидшення. Ділянка показує проміжний стан підвищення напруги, що проходить в транспортного засобу при швидкості.

 

Рисунок 3.8 Набір даних їздового циклу для опису підвищення напруги на високих швидкостях

 

Велика частина того, що показали попередні графіки, дальше пояснюється четвертою ділянкою їздового циклу, зображеною на рисунку 3.8. В цьому випадку транспортний засіб пришвидшено близько до 68 миль/год. Оскільки рівень пришвидшення різний, то підвищення напруги змінюється від мінімального до максимального кілька разів. При 28,1-49,8 миль/год максимальна напруга зростає, що випливає і із процесу пришвидшення і із швидкості, що збільшується. Між 49,8-59,7 миль/год існує мінімальна тенденція пониження напруги нижче максимального рівня. Вище 59,7 миль/год напруга залишається на максимальному рівні. Замітимо, що на графіку зображено також кутову швидкість обертання електродвигуна в заданих точках. На рисунку 3.8 зображено також зворотню ЕРС генератора, яка раніше досліджувалася в цьому розділі (рисунок 3.4). Точки швидкості, підготовлені в розрахунковому еквіваленті транспортного засобу, приближаються. Лінії зєднань добавлені для ясності. Дані показують як рідко підвищена напруга падає нижче максимальної напруги генератора. Хоча фактичний алгоритм електронного контрольного приладу для керування підвищенням напруги невідомий, ця і попередні ділянки дають чітку картину як напругою в загальному керують в процесі пришвидшення, високих швидкостей і гальмування. Оскільки оцінка конвертера перешкоджає забезпечити якісне дослідження електродвигуна, то конвертер не використовувався в подальших дослідженнях робочих характеристик. Шість додаткових графіків даних їздового циклу при інших дослідженнях їздового циклу наводяться нижче. Ці графіки корисні при подальшій характеристиці принципу дії конвертера підвищення напруги і електронного контрольного приладу керування конвертером.

 

3.1.3 Ділянки їздового циклу, що характеризують роботу конвертера

Всі числа у цьому розділі характеризують ті ж самі п'ять параметрів: напруга й струм на виході від конвертера, вихідне положення педалі керування подачею палива, вихідне положення педалі гальма, і швидкість транспортного засобу. Ці п'ять параметрів ідентифіковані на кожній ділянці. Відзначимо, що позитивний струм пускає в хід електродвигун, і негативний струм заряджає батарею гібридної системи приводу. Як і у попередньому розділі, одиниці опущені для отримання якісної картини.

Рисунок 3.9 показує швидке пришвидшення і як це пришвидшення впливає на підвищення напруги до максимуму 500 В. Найвищий струм зустрічається протягом найтривалішого пришвидшення. Рисунок також показує, як щораз, коли педаль керування подачею палива на мить відпущена, негайно починається зарядка акумуляторної батареї. Гальмування в останній третині ділянки створює високий, тривалий зарядний струм, що приблизно відбиває процес, який відбувається при натисканні педалі гальма.

 

Рисунок 3.9 Ділянка їздового циклу, що ілюструє швидке пришвидшення

 

Рисунок 3.10 Друга ділянка їздового циклу, що ілюструє швидке пришвидшення

Рисунок 3.10 показує плавне пришвидшення, що майже безупинно підтримує підвищену напругу на максимальному рівні. Тривалий період гальмування має подібний ефект на підвищену напругу, поки швидкість транспортного засобу не стає низькою. Підготовлені дані охоплюють тільки ~30 с. Рисунок 3.11 був відібраний при змінній вихідній напрузі конвертера. Довга тривалість напруги на максимальному значенні супроводжується великими її коливаннями; тільки відпускання педалі керування подачею палива починає вирівнювати напругу. Негайно після ц

Похожие работы

<< < 1 2 3 4 5 6 7 8 9 > >>