Автоматизированные мехатронные модули

Режим работы таких ТСК отличается исключительной интенсивностью выполнения погрузочно-разгрузочных и складских операций. Складские системы, выполняющие функции материально технического снабжения, характеризуются

Автоматизированные мехатронные модули

Курсовой проект

Разное

Другие курсовые по предмету

Разное

Сдать работу со 100% гаранией

Введение

 

На базе ММД уже сегодня создаются экологически чистые наземные, подземные и водные транспортные средства, а также технологии высокоскоростного резания легких сплавов для авиационных металлоконструкций, высокопроизводительного, "сухого" шлифования прецизионных деталей для автомобильной и подшипниковой промышленности, субмикронных измерений деталей и прецизионной высокопроизводительной обработки штампов и пресс-форм графитовых электродов и пластмассовых изделий.

В данной работе рассматривается три различных темы. Не смотря на различность рассматриваемого оборудования, все темы могут непосредственно пересекаются.

Конструкция инструмента позволяющая производить его замену без подналадки оборудования необходимая область в развитии промышленности. Требующая внимания разработчиков и промышленности производящая инструмент.

В связи с сложившейся тенденцией развития производства появилась проблема автоматизации склада. Ниже описаны основные способы.

  1. Зарубежные мехатронные модули и их классификация.

 

Мехатронные модули движения - приводы машин нового поколения.

 

Анализ развития мирового рынка продукции машиностроения свидетельствует о появлении нового класса технологического и измерительного оборудования, транспортных средств на базе мехатронных модулей движения (ММД). Причем объемы производства ММД в развитых странах мира с каждым годом увеличиваются. Миллионы ММД находят применение в авиации, космосе, приборостроении, электротехнике, станкостроении, робототехнике, автомобилестроении и других важнейших отраслях промышленности.

На базе ММД уже сегодня создаются экологически чистые наземные, подземные и водные транспортные средства, а также технологии высокоскоростного резания легких сплавов для авиационных металлоконструкций, высокопроизводительного, "сухого" шлифования прецизионных деталей для автомобильной и подшипниковой промышленности, субмикронных измерений деталей и прецизионной высокопроизводительной обработки штампов и пресс-форм графитовых электродов и пластмассовых изделий.

При этом главным признаком, отличающим ММД от общепромышленного электропривода, является введение электродвигателя в узел машины: электрошпиндель, мотор-шпиндель, электромеханизм линейного перемещения инструментов головки, поворотный глобусный или координатный стол, мотор-колесо и т.п.

Основную номенклатуру ММД, на основе которых в настоящее время создаются производственные машины и транспортные средства нового поколения, можно подразделить на четыре группы.

А) Высокооборотные модули с максимальной частотой вращения от 9 000 до 250 000 мин"' и мощностью от 0,1 до 30 кВт для металлорежущих станков, деревообрабатывающих машин, станков для сверления печатных плат, компрессоров и т.д.

В этих модулях используются воздушные и электромагнитные подшипники. Основные преимущества выпускаемых электрошпинделей на магнитных подшипниках:

- отсутствие механических контактов и, как следствие, износа;

- возможность использования более высоких (по сравнению с традиционными конструкциями) скоростей;

- небольшая вибрация, отсутствие трения и снижение тепловых потерь;

- возможность изменения жесткости и демпфирующих характеристик системы;

- возможность работы в вакууме и вредных средах;

- экологическая чистота.

Б) Низкооборотные модули с максимальной частотой вращения от 4 до 300 мин-1, моментом от 10 до 2500 Н*м и точностью позиционирования до 3% для поворотных столов станков, измерительных машин, оборудования для электронного машиностроения, узлов роботов и многоцелевых инструментальных головок.

Группой "Мехатроника" в Санкт-Петербурге освоено производство мехатронных поворотных столов серии ПМС диаметром 200-1250 мм, с точностью позиционирования до 3 , максимальной частотой вращения до 12 мин, максимальным моментом до 2500 Нм.

В) Модули линейного движения с усилием от 10 до 5000 Н и скоростью до 32 м/с для приводов металлорежущих станков, промышленных роботов и измерительных машин, а также для запирающих устройств газонефтепроводов.

Г) Цифровые электроприводы с бесколлекторными синхронным и асинхронным двигателями мощностью до 10 кВт с моментом от 1 до 40 Н-м и высоким отношением момента к массе для приводов подачи высокопроизводительных станков и роботов, текстильных и деревообрабатывающих машин, приводов вентиляторов, насосов и т.д. Блок управления такими приводами создается на базе силовых интеллектуальных схем и встраивается в корпус или клеммную коробку электродвигателя.

Производство этих электроприводов освоено на российско-итальянском предприятии "Мехатрон".

Применение ММД в обрабатывающих центрах традиционной компоновки позволило повысить производительность фрезерования почти в 3 раза. Относительно высокая стоимость таких машин не останавливает ведущие авиационные концерны в мире от их закупок уже в настоящее время.

Еще большие возможности применения ММД имеют машины нетрадиционной компоновки: обрабатывающие и измерительные машины на основе так на-зываемой платформы Стюарта и мехатронных поворотных столов.

 

1.2 Автоматизированные мехатронные модули линейных и вращательных перемещений металлообрабатывающих станков.

 

На основании прогноза и анализа развития станкостроения можно выделить следующие основные направления:

- качественное изменение конструкций металлорежущих станков (конструкции станков с параллельной кинематикой, гексаподные конструкции).

- существенное повышение производительности станков, реализация технологий скоростной обработки;

- широкая унификация станков, реализация принципов агрегатномодульного конструирования.

Для решения перечисленных задач наряду с совершенствованием технологии обработки, появлением новых режущих материалов, инструментов создаются принципиально новые мехатронные станочные узлы привода и автоматизации на базе интеграции средств прецизионной механики, электроники, электротехники.

- выявить области эффективного использования мехатронных модулей линейного и вращательного движения в металлообрабатывающих станках;

- разработать методы проектирования и структурного построения мехатронных модулей для станков, в том числе интеллектуальных модулей движения;

- разработать методы оптимальной настройки и управления мехатронными модулями, обеспечивающие наилучшие эксплуатационные показатели (металлообрабатывающего оборудования;

- проанализировать влияние использования мехатронных модулей в станках на производительность, качество и точность обработки;

- на базе исследований создать и внедрить в производство конкретные модели мехатронных модулей линейного и вращательного движения и обеспечить их эффективное использование в металлорежущих станках.

При анализе мехатронных модулей необходимо рассмотреть общетехнические и экономические аспекты создания мехатронных модулей, а также рассмотреть мехатронные модули как элемент электромеханического преобразования, как элемент динамической системы станка.

 

1.3 Основные виды мехатронных модулей

 

Мехатронные модули обладают следующими особенностями:

- использование однотипных унифицированных узлов в различных вариантах компоновки станков, обеспечивающих агрегатно-модульное построение;

- уменьшение времени ремонта за счет поузловой замены;

- расширение и наращивание функций станков за счет добавления мехатронных модулей и узлов;

- создание разветвленных систем диагностики;

- упрощение сервисного обслуживания за счет применения однородных конструкций.

Классификация мехатронных модулей приведена на рисунке 1.

Модули подразделяются по виду станочного механизма и по виду системы управления. Станочные механизмы в свою очередь подразделяются на механизмы главного движения, механизмы подачи и вспомогательных перемещений.

Ниже приводятся основные виды конструкций мехатронных модулей (В -модули вращательного движения, Л - модули линейного движения).

Механизмы главного движения:

- мотор-шпиндель шпиндельный станочный узел, на валу которого монтируется ротор приводного двигателя (В).

- электрошпиндель - электродвигатель, непосредственно к валу которого крепится режущий инструмент (В).

- мотор-редуктор - электродвигатель со встроенным планетарным механизмом, обеспечивающим две и более ступеней механической редукции (В).

- механизмы подачи и вспомогательных перемещений:

- мотор-редукторы со встроенной планетарной передачей (В).

- мотор-редукторы со встроенной волновой передачей (В).

Модули линейного движения на базе плоских и пазовых линейных двигателей (Л).

Рисунок 1- Классификация мехатронных модулей.

  1. Конструкция инструмента позволяющая производить замену без подналадки.

 

При работе на станках с ручным управлением механизированы только рабочие движения инструмента. Установку, настройку и замену инструмента, а также контроль за его состоянием осуществляет оператор. Повышение уровня автоматизации процесса обработки путем уменьшения вмешательства оператора достигается наряду с другими мероприятиями применением ряда новых, в том числе специальных конструкций инструмента, которые отвечают требованиям высокой эффективности использования оборудования с ЧПУ. Критерием оценки необходимости применения нового инструмента является минимальность себестоимости операции.

Как известно, себестоимость операции выражает в денежной форме часть общественных издержек производства, включающую затраты на средства труда и заработную плату:

1.1

где Q полная себестоимость операции механичес

Похожие работы

1 2 3 > >>