Автоматизация теплотехнических расчетов для котлов ЦЭС

Важное значение для надежной работы котла имеет качество питательной воды. В котел непрерывно поступает с ней некоторое количество взвешенных твёрдых

Автоматизация теплотехнических расчетов для котлов ЦЭС

Курсовой проект

Физика

Другие курсовые по предмету

Физика

Сдать работу со 100% гаранией

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«МАГНИТОГОРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМ.Г.И. НОСОВА»

Кафедра Вычислительной техники и прикладной математики

 

 

 

 

 

 

КУРСОВАЯ РАБОТА

по дисциплине «Учебно-исследовательская работа студента»

на тему «Автоматизация теплотехнических расчетов для котлов ЦЭС»

 

 

Исполнитель: Бондаренко Н.А.,

студентка 4 курса группы АВ-08-2

Руководитель: Кухта Ю. Б., доцент, к.т.н.

 

 

 

 

 

 

Магнитогорск - 2012

 

Оглавление

 

1. Предметная область

.1 Характеристика используемого топлива

.2 Состав твердого, жидкого и газообразного топлива

.3 Высшая и низшая теплота сгорания топлива

.4 Условное топливо

.5 Температура горения топлива

.6 Теплотехническая оценка топлива

.7 Балласт топлива

.8 Коэффициент использования тепла топлива

.9 Горение топлива т экология окружающей среды

.10 Влияние избытка воздуха в топке на образование оксидов азота

.11 Характеристика Центральной электростанции ОАО «ММК»

.12 Цель

.13 Используемые формулы

.14 Существующие программные аналоги

. Реализация

.1 Инструменты разработки

.2 Алгоритм

.3 Описание решения задачи

. Пример использования программы

Заключение

Список используемых источников

 

Введение

 

Проблема снижения энергетических затрат, проблема энергосбережения становится все более актуальной в мировом аспекте. Особенно актуальна эта проблема для российской экономики, поскольку в России энергоемкость промышленного производства оказывается во много раз выше общемировых показателей. Эта проблема еще более обостряется в связи с постоянным увеличением в нашей стране стоимости энергоносителей, в частности электроэнергии.

При решении проблем энергосбережения важно определить основные подходы и методы, влияющие на повышение экономичности работы энергетических мощностей, за счет рационального использования энергоресурсов. Кроме того, остро стоит вопрос о вовлечении в производство вторичных энергоресурсов, использование которых имеет важное значение для повышения эффективности производства, в частности доменного газа.

Доменный газ используется для технологических целей - теплоснабжения и выработки электроэнергии.

 

1. Предметная область

 

1.1Характеристика используемого топлива

 

Энергетическим топливом называются горючие вещества, которые экономически целесообразно использовать для получения в промышленных целях больших количеств тепла. Основными его видами являются органические топлива: торф, горючие сланцы, угли, природный газ, продукты переработки кокса, чугуна и другие.

По способу получения различают природные и искусственные топлива. К природным относятся натуральные топлива: уголь, сланцы, торф, нефть, природные газы. Из твердых топлив к искусственным относятся - кокс, брикеты угля, древесный уголь. Из жидких - мазут, бензин, керосин, соляровое масло, дизельное топливо. Из газовых - газы доменный, генераторный, коксовый, подземной газификации.

Торф, бурые угли, каменные угли и антрациты образовались в процессе последовательной углефикации отмершей растительной массы.

Природный газ. Большое значение в топливном балансе России имеют природные газы, представляющие собой смесь углеводородов, сероводорода и инертных газов: азота и углекислоты. Основной горючей составляющей природных газов является метан (от 80 до 98%), что обусловливает их высокую теплоту сгорания. В них инертных газов содержится немного: 0,1 - 0,3% С02 и 1 - 14% N2.

Теплота сгорания сухого природного газа 8000 - 8500 ккал/м3.

Доменный газ образуется при выплавке чугуна в доменных печах. Его выход и химсостав зависят от свойств шихты и топлива, режима работы печи, способов интенсификации процесса и других факторов. Выход газа колеблется в пределах 1500-2500 м3 на тонну чугуна. Доля негорючих компонентов (N2 и CO2) в доменном газе составляет около 70%, что и обуславливает его низкие теплотехнические показатели (низшая теплота сгорания газа равна 800-1200 ккал/м3).

При сжигании доменного газа максимальная температура продуктов сгорания (без учёта тепловых потерь и расхода теплоты на диссоциацию CO2 и H2O) равна 1400-1500 0C. Если перед сжиганием газа его и воздух подогреть, то температуру продуктов сгорания можно значительно повысить.

Коксовый газ образуется при коксовании угольной шихты. В чёрной металлургии он используется после извлечения химических продуктов.

Состав коксового газа зависит от свойств угольной шихты и условий коксования. Объёмные доли компонентов в газе находятся в следующих пределах, %: 52-62 H2; 0,3-0,6 O2; 23,5-26,5 CH4; 5,5-7,7 CO; 1,8-2,6 CO2. Теплота сгорания равна 17-17,6 МДж/м3, максимальная температура продуктов сгорания - 2070 0С.

 

1.2Состав твердого, жидкого и газообразного топлива

 

Твердые и жидкие топлива представляют собой сложные соединения горючих элементов, молекулярное строение которых еще недостаточно изучено, и включают в себя минеральные примеси и влагу. Элементарный химический анализ этих топлив не раскрывает химической природы входящих в них соединений и поэтому не может дать достаточно полного представления об их свойствах, но позволяет рассчитать тепловой и материальный баланс горения топлива. Соответственно степени углефикации содержание углерода в органической массе топлив увеличивается, а кислорода и азота уменьшается, что способствует повышению энергетической ценности топлива.

Химический состав газообразных топлив, представляющих собой простые смеси, определяют полным газовым анализом и выражают в процентах от их объема.

Топливо в том виде, в каком оно поступает к потребителю, называется рабочим, а вещество, составляющее его, - рабочей массой. В элементарный химический состав его, выражаемый следующим образом:

+Hp+Op+Np+Spop+к+Ap+Wp=100%

 

входят горючие вещества: углерод С, водород Н, сера S, а также кислород О и азот N, находящиеся в сложных высокомолекулярных соединениях[4]. Топливо содержит негорючие минеральные примеси, превращающиеся при сжигании топлива в золу А и влагу W.

Минеральные примеси и влажность одного и того же сорта топлива в разных районах его месторождения и различных местах могут быть разными, а также могут изменяться при транспортировке и хранении. Более постоянным является состав горючей массы топлива. Имея в виду это обстоятельство, для сравнительной теплотехнической оценки различных сортов топлива ввели условные понятия сухой, горючей и органической массы, составляющие которых, выраженные в процентах, обозначаются теми же символами, что и рабочая масса, но соответственно с индексами «с», «г» и «о» вместо индекса рабочей массы, «р».

Твердое топливо с установившейся в естественных условиях влажностью называется воздушно-сухим. Проба такого топлива, поступающего для лабораторного анализа, носит название аналитической пробы топлива.

Основной горючей составляющей топлива является углерод, горение которого обусловливает выделение основного количества тепла. Теплота сгорания аморфного углерода 8130 ккал/кг.

Водород является вторым по значению элементом горючей массы топлива, его содержание в горючей массе твердых и жидких топлив колеблется от 2 до 10%. Много водорода содержится в природном газе, мазуте и горючих сланцах, меньше всего в антраците. Теплота сгорания водорода в водяной пар - 2579 ккал/м3.

Кислород и азот в топливе являются органическим балластом, так как их наличие уменьшает содержание горючих элементов в топливе. Кроме того, кислород, находясь в соединении с водородом или углеродом топлива, переводит некоторую часть горючих в окислившееся состояние и уменьшает его теплоту сгорания. Содержание кислорода велико в древесине и торфе. Азот при сжигании топлива в атмосфере воздуха не окисляется и переходит в продукты сгорания в свободном виде.

Сера может содержаться в топливе в трех видах: органическая Sop, колчеданная Sк и сульфатная

 

Sc: S=Sop+Sк+Sc.

 

Органическая сера входит в состав сложных высокомолекулярных органических соединений топлива. Колчеданная сера представляет собой ее соединения с металлами, чаще с железом (FeS2 - железный колчедан), и входит в минеральную часть топлива. Органическая и колчеданная сера Sop+к при горении топлива окисляется с выделением тепла. Сульфатная сера входит в минеральную часть топлива в виде сульфатов CaS04 и FeS04 и поэтому в процессе горения дальнейшему окислению не подвергается. Сульфатные соединения серы при горении переходят в золу. В горючую массу топлива входят Sop и Sк, которые при сгорании топлива переходят в газообразные соединения SO2, и в небольшом количестве в SO3.

Содержание серы в твердых топливах обычно невелико. В нефти сера входит в состав неорганических соединений, в природных газах она практически отсутствует, в попутных газах некоторых нефтяных месторождений содержится немного серы в виде сероводорода H2S и сернистого газа SO2. Образующийся при горении топлива сернистый газ и особенно сопутствующий ему в небольшом количестве серный газ SO3 вызывают коррозию металлических частей парогенераторов и отравляют окружающую местность. Вследствие низкой теплоты сгорания - 9,

Похожие работы

1 2 3 4 5 > >>