Автоматизация металлургических цехов

Прокатный стан обслуживается несколькими печами, из которых нагретый металл через окно выдачи поступает на общий рольганг и подается к стану.

Автоматизация металлургических цехов

Реферат

Экономика

Другие рефераты по предмету

Экономика

Сдать работу со 100% гаранией

 

 

Министерство общего и профессионального образования

Российской Федерации

 

 

Волгоградский государственный технический университет

 

 

Кафедра'' Технологии материалов''

 

 

 

 

 

 

 

 

 

 

Курсовая работа

По дисциплине: '' Автоматизация металлургических процессов''

 

 

Тема работы: '' Разработать схему автоматического регулирования и контроля параметров управления методической печи ''

 

 

 

 

 

 

 

Выполнил:

Студент гр. М-434

Синявин Д.А.

Проверил:

Доцент

Ласенко В.В.

 

 

 

 

 

 

 

 

Волгоград 2000

 

 

 

Автоматизация управления методическими печами

Для нагрева металла перед прокаткой на сортовых и листопрокатных станах широко распространены методические печи.

Продвижение заготовок, размеры которых составляют: толщина 0,060,4, ширина 0,061,85 и длина 1,012,0 м, осуществляется с помощью толкателей. Металл в своем движении последовательно проходит зоны печи: методическую (зону предварительного подогрева), сварочные (нагревательные) и томильную (зону выдержки). Продукты сгорания движутся навстречу металлу. Количество зон определяется заданным температурным режимом нагрева.

В сварочной зоне происходит сжигание топлива, температура в ней постоянна по длине. В методической зоне происходит утилизация тепла уходящих газов, и ее температура снижается к окну посада. Задачей нагрева является получение допустимого перепада температур по сечению заготовки при заданной конечной температуре поверхности. Для уменьшения величины перепада необходимо приближать температуру сварочной зоны к конечной температуре поверхности, а для увеличения интенсивности нагрева необходимо стремиться к увеличению температуры этой зоны. Это противоречие разрешается при трехзонном режиме, где появляется специальная томильная зона, в которой поддерживают постоянную температуру, более низкую, чем в сварочной зоне: на 3050° С выше необходимой температуры металла, и в которой происходит выравнивание температур по сечению. В ряде случаев при нагреве массивных заготовок на печах предусматриваются нижние сварочные зоны, которые позволяют интенсифицировать процесс за счет двустороннего нагрева металла. Методические печи являются агрегатом непрерывного действия с распределенными по длине и постоянными во времени температурным и тепловым режимами (при определенной производительности).

Отопление печей осуществляется смешанным газом с теплотой сгорания 58 МДж/м3 (1200--2400 ккал/м3), природным газом или мазутом. Тепловая мощность современных крупных методических печей достигает 150 МВт (150 млн. ккал/ч), производительность 100 т/ч и выше.

Температура нагрева металла зависит от марки металла и составляет для рядовых марок стали 12001250° С. Для более глубокой утилизации тепла на печах устанавливают рекуператоры: керамические и металлические для подогрева воздуха, металлические для подогрева низкокалорийного газа.

Прокатный стан обслуживается несколькими печами, из которых нагретый металл через окно выдачи поступает на общий рольганг и подается к стану. Методические печи работают в условиях переменной производительности стана, изменяющихся параметров загружаемого металла: температуры, размеров, марки. Задача управления процессом нагрева металла в методических печах заключается в выборе и поддержании режима работы, обеспечивающего получение металла заданного качества с минимально возможным удельным расходом топлива в условиях переменной производительности агрегата. Температура в зонах печи измеряется термопарами 1-1, работающими в комплекте с потенциометрами 1-2. Напряжение выходных ферродинамических преобразователей потенциометров суммируется с напряжением, снимаемым с ферро-динамического дистанционного задатчика ДЗФМ-1 1-3, которым устанавливается заданная величина температуры. Алгебраическая сумма напряжений поступает на вход И-регулятора 1-4. При несоответствии между заданным и фактическим значением температуры от регулятора исполнительному механизму 1-8 , через усилитель (1-7) поступает сигнал на открытие или закрытие регулирующей заслонки 1-9 на зональном подводе газа. Управление системой осуществляется ключами (1-5,1-6).Система регулирования соотношения газвоздух по зонам печи .Расходы газа и воздуха в томильной зоне контролируют диафрагмами (2-1,2-2) и дифманометрами (2-3,2-4) и вторичными самопишущими приборами ВФСМ-10 (2-5,2-6). Заданное значение величины соотношения устанавливается задатчиком ДЗФМ-5 2-7. Разность между текущим и заданными значением соотношения поступает на вход регулятора 2-8, который через усилитель 2-11 воздействует на исполнительный механизм 2-12, связанный с регулирующей заслонкой ДГ-550 2-13 на воздухопроводе. Для сварочных зон схемы регулирования соотношения выполнены аналогично. Давление контролируется отборным устройством 3-1, манометром 3-2 и вторичным самопишущим прибором 3-3. Заданное значение этого давления устанавливается задатчиком ДЗФМ-4 3-4. Разность между текущей и заданной величинами давления на вход регулятора 3-5, который воздействует на исполнительный механизм 3-9 дымового шибера 3-10. Величина давления фиксируется на вторичном самопишущем приборе -ВФСМ-10 3-3. Качество регулирования давления в печи хорошее.

Приборы для измерения температуры

 

Термопара

 

Термопара представляет собой два электрода с диаметром 0,5мм для благородных металлов. Эти электроды скручены и сварены на рабочем конце 1, который находится в изоляционном фарфоровом наконечнике 2. Электроды 3 изолированы друг от друга одноканальными или двухканальными фарфоровыми бусами 4. Для защиты от механических воздействий термопара помещается в защитный чехол 5. Чехлы изготавливают из фарфора или карбокорундовых материалов. В головке термопары 6 помещается пластмассовая панель 7, к которой прикреплены клеммы 8. На одной из них указана положительная полярность. Для защиты клеммы термопары от пыли и влаги головка ее закрывается крышкой 9, а соединительные провода выводятся через штуцер с асбестовым уплотнением.

 

 

Потенциометр

Автоматические потенциометры исключают участие человека в проведении операций компенсации входного сигнала и поэтому нашли широкое распространение для измерения, регистрации, сигнализации и автоматического регулирования температуры в металлургических агрегатах.

 

На рисунке приведена упрощенная схема устройства автоматического потенциометра. Сигнал сравнивается с компенсирующим напряжением Uk, снимаемым с диагонали неуравновешенного измерительного моста ИМ. Мостовая измерительная схема является более совершенной и позволяет непрерывно вводить коррекцию на изменяющуюся температуру свободных концов термоэлектрического термометра.

Если сигнал Uk, то на вход вибропреобразователя ВП подается сигнал дисбаланса ΔU. Происходит преобразование напряжения постоянного тока в электрический сигнал переменного тока, который затем усиливается в усилителе и подается на реверсивный двигатель РД. Последний одновременно перемещает движок реохорда Rp и стрелку относительно шкалы прибора. Изменение положения движка Rp приводит к такому изменению Uk, которое влечет за собой уравновешивание измеряемой т. э. д. с. компенсирующим напряжением. При этом ΔU =0 и двигатель останавливается. Таким образом, любые изменения т. э. д. с. приводят к перемещению РД, т. е. прибор непрерывно автоматически компенсирует измеряемый сигнал известным напряжением.

Автоматические потенциометры выпускаются различных модификаций: показывающие, самопишущие (ленточная или круглая диаграмма); одно- и многоточечные (2; 3; 6; 12 каналов); миниатюрные, малогабаритные, нормальных размеров; регулирующие, с выходными устройствами дистанционной передачи показаний с различным временем пробега стрелкой всей шкалы.

Задатчик расхода и количества.

Ферродинамический датчик может быть применен как дистанционный задатчик. Дистанционный ферродинамический задатчик типа ДЗФМ является бесконтактным устройством, вырабатывающим ЭДС переменного тока, пропорционально углу поворота стрелки задатчика.

Он применяется в схемах регулирования в комплекте с регуляторами и первичными приборами, снабженными входящими ферродинамическими датчиками.

Основным узлом дистанционного задатчика ДЗФМ является ферродинамический датчик ПФ рамка которого кинематически через сектор 1 и шестерню 2 соединена с рукояткой 3 и стрелкой задатчика 4. Задатчик снабжен шкалой градуированной в единицах заданной величи

ны.

Напряжение рамки датчика (Д), зависящее от угла поворота служит входным напряжением задатчика (3). Питание его осуществляется от приборов работающих в комплекте с ним.

Задатчики ДЗФМ выпускаются шести модификаций (ДЗФМ-1ДЗФМ-6) в зависимости от модификации встраиваемого преобразователя ПФ. Задатчики всех типов предназначены для утопленного монтажа на щитах или пультах. Задатчики ДЗФМ имеют габаритные размеры диаметром (155 Х 105)

 

Регулятор.

ПИ-регулятор (см. рис.) предназначен для работы с измерительными приборами, снабженны

Похожие работы

1 2 3 4 > >>