Использование установки ДСМ-2 для моделирования поведения первых зеркал в термоядерном реакторе ИТЕР

Дипломная работа - Физика

Другие дипломы по предмету Физика

Для того чтобы скачать эту работу.
1. Подтвердите что Вы не робот:
2. И нажмите на эту кнопку.
закрыть



МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

Харківський національний університет

імені В. Н. Каразіна

Фізико-технічний факультет

 

 

 

 

 

 

 

 

КВАЛІФІКАЦІЙНА РОБОТА

БАКАЛАВРА З ФІЗИКИ

Використання установки ДСМ-2 для моделювання поведінки перших дзеркал у термоядерному реакторі ИТЕР

 

 

 

 

 

 

 

 

 

 

 

 

Харкiв 2010

СОДЕРЖАНИЕ

 

АННОТАЦИЯ

ВВЕДЕНИЕ

. АНАЛИТИЧЕСКИЙ ОБЗОР

.1 Медные зеркала

.2 Зеркала из нержавеющей стали

.3 Аморфные зеркала

. ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ

.1 Общие сведения и цель исследований

.2 Экспериментальная установка

.3 Результаты экспериментов с зеркалами из аморфных сплавов

.4 Методика и проведение эксперимента

.4.1 Рабочий цикл. Данные эксперимента для образцов из меди и нержавеющей стали

.4.2 Данные эксперимента для аморфных образцов

ВЫВОД

ЛИТЕРАТУРА

 

АННОТАЦИЯ

дейтериевый плазма аморфный гидридообразующий

В работе приведены результаты исследований деградации коэффициента отражения для металлических зеркал и зеркал из аморфных сплавов под действием распыления ионами дейтерия с энергиями 0.1 - 1.5 КэВ.

Приведены особенности влияния бомбардировки ионами дейтериевой плазмы на зеркала из аморфных сплавов. Установлены причины поглощения дейтерия зеркалами из аморфных сплавов.

Экспериментально проверена гипотеза о зависимости поглощении дейтерия от наличия или отсутствия гидридообразующих компонент.

Сделаны выводы о факторах, влияющих на поглощение дейтерия.

 

Вступление

 

Управляемый термоядерный синтез (УТС) на основе изотопов водорода - практически неисчерпаемый источник энергии. На Солнце уже миллиарды лет происходит неуправляемый термоядерный синтез - из тяжелого изотопа водорода дейтерия образуется гелий. При этом выделяется колоссальное количество энергии.

Впервые, задача по УТС была предложена в Советском Союзе. Идея создания термоядерного реактора зародилась в 1950-х годах. В Советском Союзе была предложена магнитная ловушка ТОКАМАК (сокращённое название ТОроидальной КАмеры с МАгнитными Катушками). В ноябре 1985 года было принято решение о проектировании Международного термоядерного реактора на основе такой магнитной конфигурации (ИНТОР). Этот проект впоследствии был сильно пересмотрен (ИТЭР), и в нестоящее время его реализация ведется в кооперации 34 стран.

Задача ИТЭР заключается в демонстрации принципиальной возможности длительного поддержания режима горения дейтериевой смеси и решение физических и технологических проблем, которые могут встретиться на этом пути. Следующим шагом должно стать создание реактора ДЕМО, цель сооружения которого - демонстрация возможности коммерческого использования термоядерного реактора.

Одной из важнейших задач является проблема оптической диагностики плазмы термоядерного реактора. Оптическая диагностика позволяет бесконтактными методами исследовать состояние плазмы в реакторе, а значит получать объективную информацию о температуре, плотности и элементном составе плазмы. В будущем термоядерном реакторе (в частности в ИТЭРе) внутренняя часть системы оптической диагностики будет состоять из перископической системы зеркал [1], которая позволит выводить излучение плазмы из реактора наружу, для непосредственного измерения и анализа его характеристик и получения информации о параметрах плазмы. При этом, возникает проблема первых зеркал (ПЗ) - зеркал, которые будут размещены в реакторе в прямой видимости плазмы. Эти зеркала окажутся примерно в тех же условиях, что и первая стенка вакуумной камеры: они будут принимать на себя поток всех видов излучения плазмы - корпускулярного, электромагнитного и нейтронного. Задача ПЗ состоит в том, чтобы передать электромагнитное излучение в анализирующую часть системы диагностики.

Под воздействием электромагнитного излучения, зеркала будут подвергаться только тепловой деформации, что может сказаться на их отражающей способности, и во избежание этого достаточно включить ПЗ в систему принудительного охлаждения.

Нейтронное излучение плазмы также может оказать воздействие на отражательную поверхность зеркал. При достаточно большом флюенсе нейтронов будут возникать структурные изменения материала зеркала.

Был проведен ряд исследований по имитации влияния нейтронного излучения на отражательную поверхность металлических зеркал. При облучении стального зеркала ионами Cr, медного - ионами Cu c энергией 1и 3 МэВ и бериллиевого - ионами Ne с энергией до 100 кэВ [2], было показано, что коэффициент отражения не меняется.

Наиболее опасным для зеркал, помещенных в прямой видимости плазмы, является бомбардировка нейтральными частицами ("атомами перезарядки")[3]. Атомы перезарядки имеют широкий энергетический спектр (10 103 эВ), что более чем на порядок превышает энергию связи атомов любого материала, поэтому будет происходить распыление поверхности первого зеркала. Средний поток атомов перезарядки на стенки вакуумной камеры ожидается порядка 2∙1015ат/см2, в то время как полная доза атомов перезарядки, из расчета на единицу площади, составит

ап~ (1021 - 1022) ат /см2. (1.1)

На основе данных о потоках атомов перезарядки на стенку и результатов расчетов[4], был сделан вывод о возможности имитации потока нейтральных частиц на поверхность ПЗ с помощью потока ионов водорода или дейтерия, имеющих широкий энергетический спектр, качественно подобный спектру атомов перезарядки.

В данной работе приведены результаты исследования деградации коэффициента отражения (за счет развития микрорельефа) для металлических зеркал при бомбардировке ионами различных газов, выполненных на установке ДСМ-2.

 

1. Аналитический обзор

 

Главным критерием, по которому можно сравнивать зеркала, является коэффициент отражения. Деградация коэффициента отражения зависит от толщины распыленного слоя. В свою очередь, толщина распыленного слоя зависит от энергии бомбардирующих частиц, длительности экспозиции, рода материала и др. Были проведены эксперименты, в которых зеркала из разных металлов подвергали ионной бомбардировке. Результаты данных экспериментов для зеркал из меди (Cu) и нержавеющей стали (SS) представлены ниже.

 

.1 Медные зеркала

 

Поликристаллические медные зеркала [7], обработанные алмазным точением, и имеющие среднюю шероховатость поверхности не больше 20 нм, были помещены на специальном держателе в камеру. Измерение коэффициента отражения (R) производилось пошагово, при многократных экспозициях; средняя толщина распыленного слоя (h) определялась по потере массы при каждой экспозиции в плазме. В описываемых экспериментах использовали три идентичных медных зеркала.

 

Одно из них было подвержено распылению ионами с широким спектром энергий (0.1 - 1.5 кэВ). Другое бомбардировалось ионами с энергией 1.5 кэВ, и третье, с энергией 0.65 кэВ (средняя энергия). График зависимости коэффициента отражения от средней толщины распыленного слоя показан на рис. 2.1. Как видно, имеет место деградация отражательной способности - за счет нарастания шероховатости поверхности. Из графика видно, что зеркало, бомбардируемое ионами с энергией 1.5 кэВ, потеряло около 40% отражательной способности при распыленном слое 1.5 мкм. При той же средней толщине распыленного слоя, зеркало, бомбардируемое ионами с широким спектром энергий (0.1 - 1.5 кэВ), потеряло немногим больше 25%. Наиболее хорошие результаты показало зеркало, которое бомбардировали ионами с энергией 0.65 кэВ: потеря коэффициента отражения составила 15%. Соответственно, шероховатость для зеркала, бомбардированного ионами 1.5 кэВ, оказалась существенно выше, чем для двух других образцов. Из графиков видно, что имеет место небольшое увеличение коэффициента отражения после начальных экспозиций. Данный эффект связан с распылением оксидной пленки с поверхности зеркала, которая возникает при длительном хранении образца на воздухе. Рис. 2.1 показывает, что знание спектра энергий ионов также важно, если мы хотим правильно предсказать влияние атомов перезарядки на первые зеркала. Такой сильный эффект влияния энергии ионов на отражательную способность, по-видимому, объясняется тем, что скорость распыления зерен с разной ориентацией увеличивается с ростом энергии ионов.

 

.2 Зеркала из нержавеющей стали (SS)

 

Зависимость R(h) от энергии бомбардирующих ионов была исследована также для однотипных поликристаллических (ПК) SS [8]- зеркал (рис.2.2). Зеркала распылялись при различных напряжениях: -300 В, -650 В, -1500 В и с широким распределением ионов по энергиям (W.S.).

Для сравнения, на графике [9]помещены зависимости, полученные для медных зеркал. Видно, что качественно коэффициент отражения для SS ведет себя так же, как и для Cu - с ростом энергии ионов, уменьшается.

При фотографировании [10] поверхности меди сканирующим электронным микроскопом (SEM), было замечено, что шероховатость поверхности медного зеркала увеличивается быстрее, причем с нарастанием энергии ионов увеличивается и эта скорость. По сравнению с Cu, результаты бомбардировки поверхности SS образцов существенно отличаются. При рассмотрении фотографий, заметно, что независимо от энергии ионов сохраняется мозаика гладких плато без признаков хаотического микрорельефа даже при толщине распыленного слоя 4.5 мкм. Но с увеличением энергии ионов увеличивается разность между глубинами плато, что приводит к снижению отражательной способности.

 

<