Web-сервис семантического подбора автомобиля

Semantic Web - часть глобальной концепции развития сети Internet, целью которой является реализация возможности машинной обработки информации, доступной во Всемирной

Web-сервис семантического подбора автомобиля

Курсовой проект

Компьютеры, программирование

Другие курсовые по предмету

Компьютеры, программирование

Сдать работу со 100% гаранией
точно соответствующие реальности, чем другие способы классификации. В то же время использование онтологий для создания запросов и анализа не сложнее традиционных методов прежде всего потому, что онтологический граф или карта отражают отношения между самими сущностями, а не их идентификаторами. Несмотря на все эти достоинства, семантические методы не выходили за рамки исследовательских проектов до тех пор, пока в мае 2001 года Тим Бернерс-Ли вместе с Джеймсом Хендлером и Орой Лассилой не опубликовали в журнале Scientific American Magazine статью The Semantic Web. С тех пор и поныне Semantic Web все еще находится в процессе становления, будет ли она реализована, и, если да, то как именно, пока не ясно, но идеи, разработанные консорциумом W3C, стандарты и языки уже активно прилагаются к корпоративным системам.

В каком-то смысле история повторяется, происходящее сейчас с Semantic Web можно сравнить с тем, что было с Web-сервисами несколько лет назад. Сервисная идея, протоколы SOAP, UDDI, WSDL и другие зародились в Web, но их очень быстро приспособили к корпоративным системам, и родилась сервисная архитектура. Как следствие, сервисы, используемые в SOA, долгое время называли исключительно Web-сервисами, хотя с Web их роднило лишь использование общего стека стандартов. Постепенно сервисы отпочковались от Web и стали самостоятельной основой SOA.

Подход Semantic Web добавляет новое качество, позволяя пользоваться данными не "вслепую", а осознанно, определяя и связывая их таким образом, чтобы упростить поиск, автоматизировать работу с ними, перераспределять между приложениями и интегрировать. То, как данные представляются в Semantic Web, можно рассматривать как новый шаг в управлении данными, и вполне естественно воспользоваться этими преимуществами в корпоративных информационных системах. Нетрудно заметить, что единство всем компонентам информационной инфраструктуры (SOA, базы данных, бизнес-процессы, программное обеспечение) придает общий для них набор терминов и соглашений. Именно они связывают отдельные фрагменты в общую картину, то есть они семантически едины, они уже есть, но существуют неявно. Этот факт обычно упускали из виду, поэтому формальные интеграционные решения оказывались сложными, дорогими и часто провальными.

В большинстве своем семантические модели строятся на основе одного из направлений в логике первого порядка (исчисления предикатов), на так называемых дескриптивных логиках, которые представляют собой семейство языков, позволяющих формально и однозначно описывать понятия в какой-либо предметной области. Каждый класс ("концепт") может быть соотнесен с другим подобным ему концептом путем добавления тэгов метаданных, указывающих на свойства, общие черты, различия и т.д. Расширение моделей тэгами позволяет создавать такие структуры, которых раньше не могло быть. В семантической модели любая информационная единица представляется графом, что упрощает ее модернизацию; например, слияние двух моделей сводится к объединению их графов.

 

2.2 Понятие онтологии

 

Онтологии являются новыми интеллектуальными средствами для поиска ресурсов в сети Интернет, новыми методами представления и обработки знаний и запросов. Они способны точно и эффективно описывать семантику данных для некоторой предметной области и решать проблему несовместимости и противоречивости понятий. Онтологии обладают собственными средствами обработки (логического вывода), соответствующими задачам семантической обработки информации. Так, благодаря онтологиям, при обращении к поисковой системе пользователь будет иметь возможность получать в ответ ресурсы, семантически релевантные запросу.

Поэтому онтологии получили широкое распространение в решении проблем представления знаний и инженерии знаний, семантической интеграции информационных ресурсов, информационного поиска и т.д.

Известны несколько подходов к определению понятия онтологии, но общепринятого определения до сих пор нет, поскольку в зависимости от каждой конкретной задачи удобно интерпретировать этот термин по-разному: от неформальных определений до описаний онтологий в понятиях и конструкциях логики и математики. Мы будем понимать этот термин следующим образом:

Онтология - формальное описание предметной области, задающее общий словарь для определения концептов и взаимосвязей этих концептов в конкретной предметной области, а так же для описания объектов, поведения и знаний, включающихся в эту предметную область.

Онтология предметной области определяет формальное приближение концептуализации. В онтологии зафиксирована та часть концептуализации, которая зависит от взгляда на мир применительно к конкретной области интересов.

В центре большинства онтологий находятся классы, каждый из которых может иметь подклассы, представляющие собой более точные понятия, чем исходный класс. Все классы онтологии выстраиваются в одну или несколько иерархий и описывают понятия предметной области. При этом классы могут содержать атрибуты, которые описывают свойства и внутреннюю структуру понятий, лежащих в основе классов. Все подклассы наследуют атрибуты родительских классов. Каждый атрибут класса помимо названия имеет тип значения, разрешенные значения, число значений (мощность). Тип значения атрибута описывает, какие типы значений может содержать атрибут, например строку или целое число.

Существует также ограничение значения атрибута, состоящее в том, что он может принимать только определенные классы или экземпляры определенных классов. Разрешенные значения атрибута устанавливают ограничения на атрибут, но уже в рамках его типа, например заданный диапазон целых чисел. Мощность атрибута определяет, сколько значений он может иметь: только одно значение - это единичная мощность или любое число значений - множественная мощность. Онтология может включать и экземпляры классов, то есть такие классы, в которых установлены значения всех их атрибутов. Считается, что онтология вместе с набором индивидуальных экземпляров классов образует базу знаний, хотя на самом деле трудно определить, где кончается онтология и где уже начинается база знаний.

 

2.3 Применение онтологий

 

Онтологии разрабатываются и могут быть использованы при решении различных задач, в том числе для совместного применения людьми или программными агентами, для возможности накопления и повторного использования знаний в предметной области, для создания моделей и программ, оперирующих онтологиями.

Онтологии могут быть использованы везде, где требуется обработка данных, учитывающая их семантику. Приведем несколько вариантов использования онтологий:

Использование онтологии для "извлечения значимой информации из web-страниц при индексировании". Предполагается повышение качества информационного поиска за счет удаления навигационной части из web-страниц, разделения web-страниц на содержательную и навигационную части. Данные методы основаны на выделении одинаковых частей страниц с одного сайта. В некоторой степени данная технология частично закрывает потребность в семантическом поиске.

Для решения задачи повышения эффективности поиска в сети Интернет предлагается строить порталы знаний, каждый из которых предоставляет доступ к ресурсам сети Интернет определенной тематики. Основу таких порталов знаний составляют онтологии, содержащие описание структуры и типологии соответствующих сетевых ресурсов.

Интересное применение онтологий - специалистами была построена "медицинская" онтология, позволяющая делать выводы. Задав симптомы, с помощью онтологий можно вывести диагноз.

Еще одно применение основано на использование онтологии для построения инновационных цепочек в системе поддержки инновационной деятельности в регионе". Система реализуется в виде Интернет-портала и включает в себя, с одной стороны, информационную систему со средствами создания и интеграции связанных с инновациями разнородных информационных ресурсов, а с другой, - развитые средства персонального участия в инновационной деятельности специалистов различного профиля. Важным компонентом, обеспечивающим интеллектуализацию таких рабочих мест, является механизм, поддерживающий интерактивное построение инновационных цепочек. Создание цепочек выполняется по автоматически генерируемому сценарию, структура которого определяется структурой инновационной цепочки, заданной в онтологии инновационной деятельности и видом инновационного запроса.

Часто онтологии используют в качестве:

Словаря предметной области. Онтология содержит общую терминологическую базу предметной области, поэтому разработчики программного обеспечения могут использовать термины из онтологии для документирования своего продукта и для формирования пользовательского интерфейса, в том числе и многоязычного.

Отображения на базу данных. Онтология предоставляет набор базовых терминов предметной области, с которыми приходится иметь дело в любом процессе измерения. Поэтому онтология является удобным базисом для разработки схемы данных измерительной системы. Она не является полной, поскольку любой конкретный процесс измерения имеет частные особенности, не задаваемые на уровне онтологии. Тем не менее, она определяет базовые понятия, которые в той или иной форме присутствуют или должны присутствовать в любой схеме данных.

Формата хранения метаданных. Свойства онтологических терминов определяют состав и формат представления метаданных, содержащихся в системе. Эффективная поддержка метаданных является одной из ключевых задач инженерии информационных систем. Привлечение онтологии позволяет повысить эффективность реализации различных средств обработки данных благодаря формированию богатых массивов метаинформации в машинно-читаемой форме.

Формата обмена данными. Открытые форматы обмена данными с внешними системами, основанные на онтологии, существенно

Похожие работы

< 1 2 3 4 5 > >>