"Инкарнация" кватернионов

3. Из всех проблем, способных с большей или меньшей вероятностью занять место великой теоремы Ферма, наибольшие шансы имеет проблема плотнейшей

"Инкарнация" кватернионов

Статья

Математика и статистика

Другие статьи по предмету

Математика и статистика

Сдать работу со 100% гаранией
х при n = 2,4,8 и тривиального тождества при n = 1, не существует.

Вращение трехмерного евклидова пространства

Пусть u, v, w - тройка попарно ортогональных векторов единичной длины, ориентированная так же, как тройка i, j, k. Тогда согласно правилу умножения векторов в алгебре кватернионов получим υ2 = v2 = ω2 = -1. Далее, υv = - vυ + [υ, v] = [υ, v] = ω. Здесь воспользуемся тем, что векторное произведение взаимоортогональных единичных векторов равно единичному вектору, ортогональному к ним обоим и направленному в соответствии с ориентацией базисных векторов i, j, k. Аналогично, vυ = -ω; vω = -ωv = υ; ωυ = -υω = ω. Таким образом, правило умножения векторов υ, v, ω является полным аналогом правила умножения векторов i, j, k. Иными словами, отображение 1→1, i→υ, j→v, k→ω задает изоморфизм алгебры кватернионов на себя, то есть, автоморфизм этой алгебры. Линейное преобразование пространства векторов, отражающих тройку i, j, k на тройку υ, v, ω, есть, очевидно, собственно ортогональное преобразование, ибо эти 2 тройки образуют ортогональные, одинаково ориентированные базисы пространства векторов.

Все автоморфизмы получаются указанным способом.

Действительно, пусть υ, v, ω - φ-образы i, j, k при некотором автоморфизме. Тогда υ2 = v2 = ω2 = -1; vυ = -υv = ω; vω = -ωv = υ и ωυ = -υω = v. Из равенства υ2 = 1 заключаем, что кватернион и есть вектор единичной длины. Действительно, пусть υ = а + υ1, где а - скалярная часть υ. Тогда -1 = υ2 = а2 + 2аυ1 - , откуда 2аυ1= 0. Если допустить, что υ1= 0, то 1 = а2, что невозможно. Поэтому υ ≠ 0, следовательно, а = о, . По той же причине кватернионы υ и v являются векторами единичной длины. Далее, из того, что скалярная часть кватерниона υv = ω равна 0, заключаем, что векторы υ и v ортогональны. По той же причине ортогональны векторы υ, ω и ω, υ, так что υ, v, ω составляют тройку попарно ортогональных единичных векторов. Ориентация этой тройки совпадает с ориентацией тройки i, j, k, ибо в противном случае было бы υv = ω, а не vυ = ω.

Пусть теперь α - некоторый кватернион единичного модуля. Отображение х→α-1хα есть автоморфизм алгебры кватернионов и, следовательно, он осуществляет некоторое собственное вращение пространства векторов. Пусть α=а+υ0, где а - скалярная часть α. Тогда , так что можно положить а = соsφ, = sinφ, 0≤φ≤. Тогда α = cosφ + υsinφ, где υ - вектор единичной длины (если α = -1, то υ0 = 0 и в качестве υ можно взять любой единичный вектор).

Пусть теперь v - какой-либо вектор единичной длины, ортогональный векторам υ, v, и пусть ω = υv. Выясним, как действует автоморфизм х→α-1хα на векторы υ, v, ω. Ясно, что векторы α и υ коллинеируют, так что α -1υα = υ.

Далее,

 

α-1= cosφ-υsinφ; α=cosφ+υsinφ;

α-1vα=(cosφ-υsinφ) v (cosφ+υsinφ)=(vcosφ-ωsinφ) (cosφ+υsinφ)=

=vcos2φ-ωsinφcosφ+vυsinφcosφ-ωυ2sinφ=v (cos2φ-sin2φ)-2ωsinφcosφ=vcos2φ-ωsin2φ;

α -1ωα =(ωcosφ+vsinφ) (cosφ+υsinφ)=vsin2φ+vcos2φ.

 

Итак, автоморфизм х→α-1хα не меняет вектор υ и поворачивает на угол 2φ плоскость, натянутую на вектора v и ω (считаем положительным направление вращения от v к ω), то есть, вращает пространство векторов вокруг оси, проходящей через вектор υ, на угол 2φ. Известно, что всякое собственное вращение трехмерного пространства есть поворот вокруг оси на некоторый угол, так что любое собственное вращение может рассматриваться как трансформация х→α-1хα пространством кватерниона с единичным модулем.

Заметим, что преобразование х→α-1хα при не дает ничего нового, если положить и при любом кватернионе х.

В любой ассоциативной алгебре с единицей обратимый элемент α порождает автоморфизм алгебры х→α-1хα, называемый внутренним автоморфизмом алгебры.

Кватернионы единичного модуля образуют группу относительно умножения. Сопоставление каждому такому кватерниону вращения х→α-1хα трехмерного пространства векторов есть гомоморфное отображение, ибо, то есть, произведению кватернионов отвечает произведение вращения. Ядро этого гомоморфизма состоит только из элементов .

Действительно, α = а + bi + сj + dk принадлежит ядру, если α-1хα = х, при любом векторе х, т.е., если хα = αх. Положив х = i, получим с = d = 0, а, положив х = j, получим

b = d = 0.

Итак, α = а =1, ибо. Тем самым получаем, что группа S0 (3) собственных вращений трехмерного пространства изоморфна фактор-группе кватернионов единичного модуля по подгруппе {1}.

Представление трехмерных вращений при помощи кватернионов очень удобно тем, что кватернион, связанный с вращением, определяет непосредственно его геометрические характеристики - ось вращений и угол поворота. При обычном задании вращения при помощи ортогональной матрицы для определения оси вращения и угла нужно произвести некоторые вычисления. Закон умножения кватернионов тоже проще закона умножения матриц 3 порядка.

Заметим еще, что группа кватернионов с единичным модулем изоморфна группе u(2) унитарных матриц 2-го порядка с определителем равным единице.

Действительно, кватерниону α = а + bi + сj + dk соответствует матрица

 

,

 

а сопряженная

 

 

- кватерниону .

Из равенства следует, что АА*=Е, т.е. матрица произведений является унитарной.

Далее, detА = а2 + b2 + с2 + d2 = 1, если матрица †=унитарна и detА=1, то равенство А-1=А* дает δ=, γ= - β, то есть, .

Таким образом, отображение α→А осуществляет изоморфизм группы кватернионов единичного модуля и группы вращений u(2) - группа алгебраических преобразований Лоренца.

Кватернион как перспективный инструментарий фундаментальных физических моделей

В данной работе лишь ставятся задачи, которые представляют интерес с точки зрения физики, а точнее, новой еще не существующей науки - «физической математики».

1. Реабилитация и развитие т.н. нестандартной математики в полном объеме, в которой аппарат дифференциального исчисления и дифференциальных уравнений считается некорректным. Тоже касается теории векторов, которые имеют смысл лишь в абсолютно изотропном и прямом пространстве, отказывая в корректности и компактности в любом криволинейном пространстве даже постоянной кривизны, не говоря уже о произвольном т.н. «финдслеровом» пространстве.

2. При этом становятся актуальными не только гиперкомплексные числа [5, 6], среди которых «скомпрометированные» своей некоммутативностью кватернионы, но и забытая сегодня функция sinvers, которой было предсказано большое будущее еще нашим русским математиком П.Л. Чебышевым.

3. Из всех проблем, способных с большей или меньшей вероятностью занять место великой теоремы Ферма, наибольшие шансы имеет проблема плотнейшей упаковки шаров. Проблему плотнейшей упаковки шаров можно сформулировать как задачу о том, как наиболее экономно сложить из апельсинов пирамиду. Молодым математикам такая задача досталась в наследство от Иоганна Кеплера. Проблема родилась в 1611 году, когда Кеплер написал небольшое сочинение «О шестиугольных снежинках». Интерес Кеплера к расположению и самоорганизации частиц вещества и привел его к обсуждению другого вопроса - о плотнейшей упаковке частиц, при которой они занимают наименьший объем. Если предположить, что частицы имеют форму шаров, то ясно, что как бы они ни располагались в пространстве, между ними неизбежно останутся зазоры, и вопрос состоит в том, чтобы объем зазоров свести к минимуму. В работе [8], например, утверждается (но не доказывается), что такой формой является тетраэдр, оси координат внутри которого определяют базисный угол ортогональности в 109о28, а не 90о. Эта проблема имеет огромное значение для физики элементарных частиц, кристаллографии и других разделов естествознания. На рис. 1 приведена иллюстрация наиболее «экономной» упаковки разных и одинаковых частиц в классическом трехмерном пространстве (рис. 1а), в которой координатное пространство имеет четыре, а не три орта, представляющие прекрасную задачу для гипергеометрических чисел от кватернионов до октав (бикватернионов) и более [5, 6]. Хотя кватернион и описывает «ориентацию» объекта в пространстве и «вращение», но принято считать, что это вращение ограниченно именно лишь ±180°. В то же время упаковка типа тетраэдра может быть названа группой лишь в рамках 6-осевых поворотов, и «плоскоугольная» проекция ортогональности между всеми базисными орт-векторами равна не 90°, а «волшебные» 109°28 (рис. 1б) подобно осям молекулы СН4 (рис. 1в).

4. Рецепт Дирака создания Новой Физики: «Прежде всего, - говорил Дирак, - нужно отбросить все так называемые «физические представления», ибо они - не что иное, как термин для обозначения устаревших предрассудков предшествующих поколений».

Начинать, по его словам, следует с красивой математической теории. «Если она действительно красива, - считал Дирак, - то она обязательно окажется прекрасной моделью важных физических явлений. Вот и нужно искать эти явления, развивать приложения красивой математической теории и интерпретировать их как предсказания новых законов физики», - так строится, по словам Дирака, вся новая физика, и релятивистская, и квантовая.

Еще менее известно, по мнению Арнольда, что релятивистские электронные уравнения Дирака имеют корни в виде кос - древней математической теории. Он заметил, исходя из топологии семейства эллиптических кривых в алгебраической геометрии, что в группе сферических кос из четырех нитей существует элемент второго порядка, и интерпретировал это свое открытие в виде теории спина электрона, имеющего 2 значения. Это означает, что для того, чтобы частица вернулась в прежнее положение, ей нужно повернуться не на 3600, а на 720.

Это было никому не понятно, и поэтому ему не верили. Чтобы убедить физиков в справедливости соответствующей

Похожие работы

< 1 2 3 >