"Инкарнация" кватернионов

3. Из всех проблем, способных с большей или меньшей вероятностью занять место великой теоремы Ферма, наибольшие шансы имеет проблема плотнейшей

"Инкарнация" кватернионов

Статья

Математика и статистика

Другие статьи по предмету

Математика и статистика

Сдать работу со 100% гаранией

«Инкарнация» кватернионов

 

Вводные замечания

Кватернион, долгие годы считавшийся бесперспективным с подачи ортодоксальных математиков [1], в настоящее время начинает свое триумфальное шествие по науке (физика, химия кристаллов, информатика) и информационно-интерактивным технологиям.

Своим открытием и названием сам кватернион обязан ирландскому математику У.Р. Гамильтону (1805-1865) [2].

Уильям Роуан Гамильтон был человеком многосторонне развитым. В четырнадцать лет владел девятью языками, в 19 лет опубликовал в трудах Королевской Ирландской Академии работу, посвященную геометрической оптике, а в 23 года получил звание королевского астронома Ирландии. К 1833 г. Гамильтон занимал пост директора обсерватории в Денсинке и был известен работами по оптике и аналитической механике. Он предсказал эффект двойной конической рефракции в двуосных кристаллах.

В числе других математических задач он 10 лет безуспешно пытался найти описание поворотов трехмерного пространства на основе алгебры трехмерных чисел, пока не увидел, что их описание соответствует другой алгебре не с двумя мнимыми числами, а с тремя. Общепризнанно, что от типа алгебры, которой подчинена та или иная природная система, зависят ее геометрия, физические законы сохранения.

В одном из писем к своему сыну У.Р. Гамильтон писал: «Это был 16-й день октября, который случился в понедельник, в день заседания Совета Королевской Ирландской Академии, где я должен был председательствовать. Я направлялся туда с твоей матерью вдоль Королевского канала; и, хотя она говорила мне какие-то отдельные фразы, я их почти не воспринимал, так как в моем сознании подспудно что-то творилось. Неожиданно как будто бы замкнулся электрический контур; блеснула искра, предвещающая многие длительные годы определенно направленной мысли и труда, моего - если доведется, или труда других, если мне будет даровано достаточно сознательной жизни, чтобы сообщить о своем открытии. Я оказался не в состоянии удержаться от желания высечь ножом на мягком камне Брогемского моста фундаментальную формулу о символах i, j, k, содержащую решение проблемы, но, конечно, эта запись с тех пор стерлась. Однако более прочное упоминание осталось в Книге записей Совета Академии за этот день, где засвидетельствовано, что я попросил и получил разрешение на доклад о кватернионах на первом заседании сессии, который и был прочитан соответственно в Понедельник 13-го следующего месяца - ноября».

Стоит упомянуть, что оригинальное описание движения твердого тела с помощью кватерниона дал в 1873 году У. Клиффорд (1845-1879), а А.П. Котельникову (1865-1944) в 1895 году удалось истолковать все формулы теории кватернионов, как «неразвернутые» формулы теории обобщенных, т.н. дуальных кватернионов [3-6]. Применительно к кинематике этот подход устанавливает соотношение между движениями тела с одной неподвижной точкой и движениями произвольного вида [7].

Постановка проблемы

В различных разделах математики возникает потребность рассматривать векторные пространства (над данным полем k), в которых кроме действий сложения и умножения на скаляры определено еще действие умножения, сопоставляющее каждой упорядоченной паре векторов третий вектор того же пространства - их произведение. В этой ситуации всегда естественно предполагать, что результат умножения λy линеен по каждому из множителей при фиксированном втором, то есть:

 

,

 

Пространство с умножением, удовлетворяющим такому требованию билинейности, называется алгеброй над полем k.

Алгеброй кватернионов называется алгебра размерности 4 над основным полем, обладающим единицей 1 и имеющим базис 1, i, j, k со следующей таблицей умножения [1]:

 

x i j k

i -1 k j

j - k -1 i

k - j - i -1

 

 

 

 

Или в более удобной форме:

 

 

При этом основное поле может быть взято произвольно.

Алгебра кватернионов над полем R

Наиболее интересной является алгебра кватернионов над полем R вещественных чисел.

Прежде всего, установим ассоциативность алгебры кватернионов. Для этого следует проверить 27 равенств: по три возможности для каждого из 3-х множителей в равенствах типа (ab) c=а(bc), проверяемых для базисных элементов i, j, k.

Избежать этого можно, установив изоморфизм алгебры кватернионов над и некоторой алгебры матриц специального вида над C. Единице сопоставим единичную матрицу2-го порядка, матрицу(здесь i - мнимая единица, ), матрицу и матрицу .

Отсюда следуют равенства: (проверить знак) Они означают, что пространство матриц Е, I, Y, K образуют алгебру, изоморфную алгебре кватернионов.

На основании ассоциативности умножения матриц делаем заключение об ассоциативности алгебры кватернионов.

Заметим, что если за основное поле принято поле C комплексных чисел, то алгебра кватернионов над C окажется изоморфной алгебре М2(C) всех квадратных матриц 2-го порядка над C, ибо матрицы Е, I, J, K линейно независимы над C и их линейные комбинации заполняют всю алгебру М2(C).

Связь алгебры кватернионов с векторами в трехмерном эвклидовом пространстве

Пусть α = а + вi + сj + dk - кватернион. Число а называется скалярной частью кватерниона. Сумма вi + сj + dk называется векторной частью кватерниона α. Кватернион с нулевой скалярной частью будем называть векторами, они, естественно, изображаются как векторы трехмерного эвклидова пространства.

Пусть и - два вектора-кватерниона. Вычислим их произведение (в алгебре кватернионов):

 

 

Здесь - векторное, а (u1, u2) - скалярное произведение кватернионов U1 и U2. Таким образом, скалярной частью кватерниона-произведения U1U2 оказывается скалярное произведение векторов u1 и u2, взятое с обратным знаком. Векторная же часть кватерниона u1u2 равна вектору произведения векторов u1, u2. Тем самым операция умножения векторов как элементов алгебры кватернионов как бы объединяет оба умножения векторов - скалярное и векторное.

Далее, можно видеть, что:

 

 

Отсюда,

 

 

Из последней формулы следует известное в векторной алгебре соотношение Якоби для условных u1, u2, u3:

 

[u1, u2, u3] + [[u2, u3], u1] + [[u3, u1], u2] = 0.

 

Для этого достаточно принять во внимание связь между ассоциативными алгебрами и алгебрами Ли.

Алгебра кватернионов как алгебра с делением

Пусть дан кватернион α = а + вi + сj + dk = а + u.

Кватернион = а - вi - сj - dk = а - u, отличающийся от α знаком векторной части, называется сопряженным с кватернионом α. Ясно, что .

Умножим кватернион α на сопряженный ему . Получим

 

α= (а + u) (а - u) = а2 + аu - аu - u2 = a2 + (u, u) - [u, u] = а2 + (u, u) = а2 + в2 + с2 + d2.

 

Поэтому, если α ≠0, то α>0. Заметим еще, что α=α.

Число называется модулем (нормой) кватерниона α и обозначается через модуль . Теперь легко установить, что каждый, отличный от 0 кватернион α имеет обратный. Действительно, , так что обратным кватернионом для кватерниона α является . Таким образом, алгебра кватернионов над полем R есть алгебра с делением. Заметим, что здесь существенно было использовано то обстоятельство, что за основное поле принято поле R, заключение о неравенстве a2 + b2 + d2 ≠ 0 при α ≠0 было бы неверно, например, для поля C или для вычетов по простому модулю.

Тождество Эйлера

Начнем с уникально интересной теоремы.

Теорема. Модуль произведения 2-x кватернионов равен произведению модулей сомножителей.

Доказательство.

Сначала докажем, что кватернион, сопряженный с произведением 2-х кватернионов, равен произведению сопряженных кватернионов, взятых в обратном порядке.

Действительно, пусть α = а + u, β = в + v, где а, в R, u и v - вектор-кватернионы. Тогда αβ = аb + аv + вu + vu = ab - (uv) + av + bu + [u, v].

Далее, = аb - ub + vu = аb - (u, v) - аv - bu + [v, u] = аb - (u, v) - аv - bu - [u, v] = αβ.

Теперь имеем:

 

,

 

откуда , что и требовалось доказать.

Рассмотрим теперь тождество через компоненты кватернионов, положив

 

α = а1 - b1i - c1j - d1k, β = а2 - в2i - с2j - d2k так, что

αβ=a1a2+b1b2+c1c2-d1d2+(а1b2-в1a2-с1d2+d1c2) i+(а1c2+b1d2-с1a2-d1b2) j+(а1a2-в1c2+с1b2-d1a2) k.

 

Получим известное тождество Эйлера:

 

(а12+в12+с12+d12) (а22+в22+с22+d22)=(а1a2+b1b2+с1c2+d1d2)2+(а1b2-b1a2-с1d2+d1c2)2+(а1c2-b1d2-с1a2-d1b2)2+(а1d2-b1c2+с1b2-d1a2)2,

 

позволяющее выразить произведение двух сумм квадратов в виде суммы 4 квадратов билинейных выражений. Аналогичные тождества имеют место для сумм двух квадратов (это тождество связано с умножением комплексных чисел) и для сумм 8 квадратов. Оказывается, что аналогичных тождеств для сумм n квадратов, кроме перечисленны

Похожие работы

1 2 3 > >>