Застосування наночасток для лікування тварин

  Семенов Б.С. Болезни пальцев у крупного рогатого скота в промышленных комплексах. Л.: Колос, 1981. С. 62 88.

Застосування наночасток для лікування тварин

Курсовой проект

Сельское хозяйство

Другие курсовые по предмету

Сельское хозяйство

Сдать работу со 100% гаранией
,02**

1,10±0,01

1,18±0,008***Твердість,

кгс/см3

147,4±1,17

154,0±1,12**

155,0±0,67

160,2±0,55***Опір проти стирання, об/мм

95,4±0,72

114,8±1,08***

104,8±1,93

117,0±2,02**1.* p<0,05;

2. ** p<0,01;

3. *** p<0,001.

 

Як свідчать дані табл. 4, при утриманні корів на деревяній підлозі при обробці копитець наночастками металів у роговому матеріалі зменшується вміст вологи зменшується на 18,01 %, вміст попелу збільшуються на 9,05, білку на 9,52, сульфгідрильних груп на 8,92, щільність на 9,39, твердість на 9,57, опір проти стирання на 8,31 %.

При утриманні на бетонній підлозі при обробці копитець наночастками металів вміст вологи зменшується на 21,05 %, вміст попелу збільшуються на 8,68, білка на 9,87, сульфгідрильних груп на 8,85, щільність на 9,32 %, твердість на 9,67 %, опір проти стирання на 8,96 %.

Таким чином, обробка копитець наночастками металів супроводжується суттєвими змінами як біохімічних, так і біофізичних характеристик копитцевого рогу. Копитцевий ріг ущільнюється, в ньому зменшується вміст вологи, за рахунок чого зростає вміст усіх досліджених біохімічних показників і значно покращуються основні біофізичні параметри.

Крім того, наночастки металів виразно впливають на перебіг кератиногенезу, основу якого становить перехід сульфгідрильних груп цистеїну в дисульфідні групи цистину з їх подвійними звязками. За рахунок цього відбувається укріплення біохімічної й біофізичної структур білкових молекул копитцевого рогу:

 

R НS + SН R S = S R + 2Н (Н2О)↓.

 

Перебіг процесу кератинізації потребує кофакторної дії, в першу чергу таких металів як мідь і цинк. Вплив наноміді та наноцинку на кератинізацію набагато вираженіший, ніж дія цих металів у молекулярному масштабі. Останнє чітко проявляється в порівняльному досліді, за якого копитця в контролі обробляли 10 %-вим розчином міді сульфату в суміші з цинком сульфатом. Початкові контрольні й дослідні біохімічні і біофізичні показники були ідентичними. Обробка солями й наночастками міді та цинку тривала 3 дні по 30 хв тричі на день. Результати враховували через 5 днів (табл. 5).

Таким чином, обробка копитець колоїдом наноміді та наноцинку, порівняно з їх обробкою розчином солей міді й цинку, достовірно покращує біохімічні і біофізичні показники копитець за виключенням вмісту сірки та зволоженості копитцевого рогу, які відносно мало впливають на інші його якості. Так, вміст міді збільшився на 10,3 %, цинку на 24,55, попелу на 7,63, білка на 4,15, сульфгідрильних груп на 7,19, щільність на 4,51, твердість на 3,58, опір проти стирання на 9,4 %.

 

Таблиця 5

Показники основних якостей копитцевого рогу при обробці солями й наночастками міді та цинку, n=5

ПоказникиОбробка 10 %-вим розчином сульфатів міді й цинкуОбробка наночастками міді та цинкуСірка, г/кг23,4±0,4922,0±1,34Мідь, мг/кг 28,0±0,4531,2±0,81**Цинк, мг/кг16,6±1,5222,0±0,89*Волога, %31,6±1,0832,0±0,89Попіл, %1,09±1,181,18±0,01*Білок, %87,8±0,9991,6±1,39*SH-групи, мкмоль/г31,0±0,4533,4±0,72*Щільність, г/см31,06±0,021,11±0,002*Твердість, кгс/см2145,6±0,85151,0±0,89**Опір проти стирання, об/мм92,4±1,17102,0±2,47**Примітка: 1.* p<0,05;

2. ** p<0,01.

Отже, наночастки Cu і Zn при обробці копитець включаються в процеси кератинізації, в той час як обробка солями міді й цинку супроводжується лише певним, у якійсь мірі, поверхневим просякненням рогу, яке досить швидко зникає під впливом вологи підлог.

Стимулювальний вплив комплексу наноаквахелатів Ag, Cu, Zn зумовлений специфічною активністю кожної складової.

Срібло має виражені антисептичні властивості. Воно пригнічує кератолітичну дію патогенної мікрофлори та грибів.

Мідь приймає участь у багатьох біохімічних процесах як складова частина ферментоактивних білків, які переносять електрони в реакціях окиснення та відновлення органічних субстратів.

Цинк забезпечує перебіг транспортних процесів, повязаних із металоензимними перетвореннями значної кількості біохімічних сполук. Разом з міддю він виражено впливає на синтез кератинових білків. Іонний радіус цинку менший ніж у міді, у звязку з чим цинк несе концентрованіший заряд, порівняно з міддю, що зумовлює його більшу спорідненість до електронів. Це забезпечує широку участь цинку в різних біологічних процесах, таких як гідроліз, приєднання до подвійних звязків, окиснення відновлення тощо.

Висока метаболічна активність наноміді й наноцинку, що проявляється у вираженій оптимізації біохімічних і біофізичних показників копитцевого рогу, зумовлена наявністю у наночасток корпускулярного, хвильового та квантового ефектів, чого не може бути у мікроелементів у молекулярній формі. Дія наночасток цілком узгоджується із законами квантової фізики щодо поводження часток такого роду в перебізі різних біохімічних процесів, зокрема кератинізації. Різноманітні часточки, які знаходяться в розчині або суспензії у формі атомів, електронів і, можливо, в інших дещо менших за розмірами часток, проявляють ті ж самі властивості, що й електрони у класичному фізичному аспекті. У перебізі фізико-хімічних реакцій наночастки виступають у якості потужного донора та діють як сильні стимулятори перебігу фізичних і хімічних явищ.

Отже, обробка рогу копитець аквахелатом наносрібла, наноміді, наноцинку супроводжується збільшенням вмісту сірки, міді й цинку та значним покращенням біофізичних показників копитцевого рогу, що набагато перевищує біохімічні й біофізичні характеристики копитцевого рогу порівняно з обробкою 10 %-вим розчином міді сульфату і цинку сульфату. Це пояснюється включенням екзогенних наночасток у перебіг біохімічних реакцій епідермісу копитець.

 

4. Застосування наночасток металів для лікування хвороб копитець заразної етіології

 

Заразні хвороби копитець корів досліджували в господарствах Київської, Чернігівської, Черкаської та Полтавської областей за допомогою клінічних (огляд, пальпація, перкусія), бактеріологічних з ідентифікацією мікроорганізмів згідно визначника Берджі (1997) та мікологічних методів. За принципом аналогів корів із неспецифічними гнійно-некротичними ураженнями, некробактеріозом і кератомікозами розподілили на контрольну та дослідну групи для кожної окремої нозології.

При неспецифічних гнійно-некротичних ураженнях, некробактеріозі та кератомікозній патології хворих корів ізолювали, ставили в чисті продезінфіковані станки. Потім на старанно очищені копитця і застосовували накладали просочені лікувальними препаратами серветки, які фіксували захисною повязкою. Обробки повторювали з інтервалом 3 4 дні до повного зникнення клінічних ознак ураження (некротичні вогнища, виразки, розпад копитцевого рогу, кульгання тощо). Для корів контрольних груп серветки просочували фенол-скипидар-димексидною емульсією, для корів дослідних груп сумішю колоїдів нанокластерів Ag, Cu, Zn, Mg. Суміш колоїдів металів це двокомпонентна система з деіонізованої води та часток металів у нанорозмірному стані (1,0 50,0 нм). Колоїд мав слабокислу реакцію з рН 6,7 6,9, вміст металів від 10 до 100 мг/л. Отриманий фізичним методом, даний колоїд значно відрізнявся від колоїдів Ag, Cu, Zn, Mg, отриманих хімічним або електролізним способом, де іони металів діють токсично і тому при лікуванні використовуються досить обмежено.

У якості етіологічного фактора при неспецифічних гнійно-некротичних ураженнях копитець виявляли асоціації умовно-патогенної мікрофлори, до складу яких входили стафілококи, стрептококи, диплококи, протей, кишкова паличка та досить патогенні мікроорганізми Clostridium perfringens тип А, Corynebacterium piogenes.

Спостерігали ерозії, виразки та поверхневе нагноєння з наявністю вогнищ некрозу в ділянках шкіри міжпальцевого склепіння, кайми, мякушів. Встановлювали майже повну відсутність утворення грануляційного барєру, у звязку з чим ураження було мяким і при натисненні з нього виділявся гнійний ексудат. При відсутності лікування гнійно-некротичне ураження прогресувало, поширюючись на підшкірну клітковину, бурси, сухожилкові піхви, сухожилки і звязки пальців, а згодом на суглоби й кістки. При цьому хвора тварина втрачала можливість спирання на уражену кінцівку.

У випадках постановки діагнозу на некробактеріоз (фузаріоз) виявляли Fusobacterium necrophorum. Клінічно спостерігали ерозії та виразки спочатку в шкірі міжпальцевого склепіння, вінчика, мякуша, суглобів, які згодом набували типових ознак гнійно-некротичних вогнищ. Своєрідною клінічною ознакою некробактеріозу на початку розвитку хвороби було утворення чітко виражених грануляційних барєрів, які певний час обмежували поширення некротичних змін, але які згодом під дією ферментів і токсинів збудника руйнувались, що зумовлювало прогресування ураження. Некробактеріозні виразки мали рожевий колір, обмаль гнійного ексудату і пальпаторно були досить твердими.

При кератомікозному ураженні захворювання починалось деструктивними змінами копитцевого рогу, вогнища якого прогресували. У звязку з цим погіршувались опорні якості рогової капсули, ріг ставав відносно мяким, він частково розпадався, при пальпації встановлювали болючість. З часом процес ускладнювався явищами неспецифічного гнійного поверхневого пододерматиту.

При мікологічному дослідженні з використанням у складі живильних середовищ часточок копитцевого рогу, що дозволяло встановити кератолітичні властивості патогенів мікозної природи, диференціювали асоціації грибів у різних комбінаціях. Найчастіше виявляли Trichoderma viride, Aeremoniella atra, Cladosporium chrisanthemi.

Результати лікування ураження копитець заразної етіології предст

Похожие работы

<< < 1 2 3 4 5 6 7 > >>