Зарождение и создание теории действительного числа

Дедекинд, также как и Вейерштрасс, обнаружил логическую трудность перехода от геометрического анализа к арифметическому, состоящую в неопределенности вещественного числа. Свое

Зарождение и создание теории действительного числа

Информация

Математика и статистика

Другие материалы по предмету

Математика и статистика

Сдать работу со 100% гаранией
и обобщаются современными математиками и сегодня.

 

4 Создание теории действительного числа

 

После «наведения порядка» в математическом анализе встал вопрос о ситуации в арифметике. «К необходимости разработки теории действительных чисел приводили многие задачи анализа и некоторые способы рассуждений, применявшиеся при решении этих задач»[4, стр. 61]. Проблема основания, понимания того, что же такое число, в XIX в. еще не была решена. С нашей точки зрения, это была задача о пополнении множества рациональных чисел. Ее пытались решить следующим способом(приведен по [4]):

Определим иррациональное число как предел последовательности рациональных чисел. Надо показать, что такая последовательность сходится. Для этого воспользуемся критерием Коши, который будет справедлив для любых рациональных значений, однако для того чтобы ответить на вопрос будет ли он справедлив для действительных чисел необходимо иметь определенными иррациональные числа. Получался замкнутый круг.

Эта задача была решена в XIX веке с разных точек зрения и независимо друг от друга Вейерштрассом, Дедекиндом, Кантором и Мерэ.

 

4.1 Карл Вейерштрасс

 

Карл Вейерштрасс родился в городе Остенфельд (предместье Эннигерло), в семье секретаря бургомистра. В 1834 г. с успехом закончил Пандерборнскую гимназию, его имя было в списке 11 самых талантливых учеников. По настоянию отца в 1834 году Вейерштрасс поступает в Боннский университет для получения юридического образования. Но юридические науки его не увлекали, большую часть времени он уделял занятиям математикой. Через 4 года Вейерштрасс бросает университет, не сдав ни одного экзамена. В 1839 году поступает в Мюнстерскую академию, а в 1841 году блестяще сдает выпускную работу. После окончания университета работает учителем в провинциальных городах Германии. В 1845 публикует статью по абелевым функциям, за которую получает докторскую степень от Кенигсбергского университета. В 1861 избирается членом Баварской академии наук. С 1856 по 1889 читает лекции в Берлинском унивеситете. Умер Вейрштрасс в 1897 году.

Математическое творчество отличается стремлением к ясности и строгости. Как пишет о нем Пуанкаре[5]: «Вейерштрасс отказывается пользоваться интуицией или по крайней мере оставляет ей только ту часть, которую не может у нее отнять» Работы Вейерштрасса охватывают широкий круг проблем: абелевы и эллиптические функции, комплексные величины, теория рядов и многие другие.

Вейерштрасс сыграл главную роль в арифметизации математического анализа. Он стремился к тому, чтобы все понятия математики перевести в буквенно-числовые. Он ушел от любых интуитивных и геометрических представлений понятия функции. Чтобы уйти от туманных формулировок вроде «Неограниченное приближение одной величины к другой», был создан язык , который позволял теперь рассматривать функции как числовые соответствия между множествами, непрерывность которых можно установить при помощи арифметических неравенств. Вейерштрасс опроверг некоторые интуитивные представления о функциях, например, он построил непрерывную функцию не имеющей производной ни в одной точке.

Вейерштрасс придерживался точки зрения, что строгость анализа зависит от арифметики. Поэтому он начинает работать над приведением в порядок доставшегося от греков математического наследства несоизмеримых. Он отделяет понятие числа от понятия величины.

Приблизительно в 1863 году Карл Вейерштрасс создает теорию вещественных чисел, которая разрешает логические нестыковки арифметики. К сожалению, он не издавал её, а изложил на лекции своим ученикам. Вейерштрасс дал свое построение в терминах точных частей единицы, но здесь оно рассмотрено в современной трактовке.

Положим что у нас есть рациональные числа. Возьмем множество рациональных такое, что его сумма любого конечного числа элементов не превосходит заданных границ. Если мы будем теперь составлять из этих чисел сумму, то если сумма будет конечной. Таким образом, конечная сумма этих чисел будет представлять рациональное число, мы можем сопоставить любому рациональному числу некоторый конечный набор из некоторого множества . С иррациональным числом этот набор будет бесконечным. Далее, возьмем два бесконечных набора. Будем считать что рациональные числа представлены несократимыми дробями. Рассмотрим набор чисел натуральных чисел . Если для сумма дробей вида из первого множества совпадает с суммой таких же дробей из второго множества, то иррациональные числа совпадают друг с другом. Рассмотрим первый номер для которого это равенство не выполняется. Если для имеет место равенство , где суммы составлены по таким рациональным числам, которые имеют вид , то первое число больше второго. Если имеется обратное неравенство, то второе число больше первого. Сложение чисел определяется операцией объединения множеств. Вычитание определяется как операция обратная сложению. Составление агрегата вида , где умножение составляется по всевозможным элементам, определяет умножение.

Таким образом, Вейерштрасс построил вещественное число. Стоит отметить, что он не приравнивает число к ряду, тем самым избегает логической ошибки своих предшественников. Из этого построения видно, что оно определяет взаимооднозначное соответствие: с одной стороны из рационального чисел можно построить вещественной число, с другой каждое вещественной число можно определить некоторым построением из вещественных чисел. Кроме того, оно использует актуально бесконечные множества.

Стоит еще раз подчеркнуть, что Вейерштрасс в своем определении вещественного числа исходит только из арифметики, не связывая их с точками на прямой.

Построение вещественных чисел позволило перейти от механического, геометрического понятия предела к теоретико-множественному. Также при помощи строго определения понятия числа Вейерштрасс развил теорию аналитических функций. Также в работах Вейерштрасса встречается прообраз того, что мы называем мощностью множеств.

 

4.2 Георг Кантор

 

Родился 3 марта 1845 в Санкт-Петербурге и рос там до 11-летнего возраста. Отец семейства был членом Петербургской фондовой биржи. Когда он заболел, семья, рассчитывая на более мягкий климат, в 1856 году переехала в Германию: сначала в Висбаден, а потом во Франкфурт. В 1860 году Георг закончил с отличием реальное училище в Дармштадте; учителя отмечали его исключительные способности к математике, в частности, к тригонометрии. Продолжил он образование в Федеральном политехнический институте в Цюрихе. Спустя год, после смерти отца, Георг получил наследство и перевёлся в Берлинский университет. Там он посещает посещает лекции Кронекера, Вейерштрасса, Куммера. Лето 1866 года Кантор провёл в университете Гёттингена, важном центре математической мысли. В 1967 году в Берлине получил степень доктора за работу по теории чисел «De aequationibus secundi gradus indeterminatis».

После непродолжительной работы преподавателем в Берлинской школе для девочек, Кантор занимает место в Галльском университете Мартина Лютера, где и пройдёт вся его карьера. В 1872 году он становится адъюнкт-профессором, тогда же, во время отпуска, завязывает дружбу с Рихардом Дедекиндом. В 34 года Кантор становится профессором математики. В 1879-84 он систематически излагает своё учение о бесконечности; «ввёл понятия предельной точки, производного множества, построил пример совершенного множества, развил одну из теорий иррациональных чисел, сформулировал одну из аксиом непрерывности» [8]. Несмотря на такую успешную карьеру, мечтает о должности в более престижном университете, например, Берлинском. Однако, мечтам не удаётся воплотиться в жизнь: многие современники, в том числе Кронекер, который рассматривается сейчас как один из основателей конструктивной математики, с неприязнью относятся к канторовской теории множеств, поскольку та утверждает существование множеств, удовлетворяющих неким свойствам, без предоставления конкретных примеров множеств, элементы которых бы действительно удовлетворяли этим свойствам.

В 1984 году Кантор испытал приступ глубокой депрессии и на время отходит от математики, смещая свои интересы в сторону философии. Затем возвращается к работе. В 1897 году он прекращает научное творчество. Умер Кантор в Галле 6 января 1918.

Одна из актуальных проблем XIX века была проблема бесконечного деления отрезков и существование точки , принадлежавшей всем таким стягивающимся отрезкам. Эта задача требовала понятия действительного числа.

Построение Кантором теории действительного числа было опубликовано 1872 году, почти одновременно с теорией Вейерштрасса и Дедекинда. В своем построении Кантор исходит из наличия рациональных чисел. Затем он вводит фундаментальные последовательности Коши и приписывает им формальный предел. Далее, он рассматривает разбивает все последовательности на классы эквивалентности. К одному и тому же классу последовательности относятся тогда и только тогда, когда их разность стремится к нуль, то есть . Далее, формальные пределы равны друг другу, если они имеют две такие фундаментальные последовательности, которые эквивалентны друг другу или . Отношение порядка определяется следующим образом.

Если и то . Если то .

Таким образом, классы эквивалентности описывают некоторые вещественные числа. Назовем их вещественными числами первого порядка. Если мы попробуем образовать вещественное число большего порядка, составляя фундаментальные последовательности Коши, то получим опять множество вещественных чисел первого порядка. Иными словами, множество вещественных чисел замкнуто.

Кантор обращает внимание тот факт, что в определении вещественного числа лежит актуально бесконечное множество рациональных чисел: «...к определению какого-нибудь иррационального числа всегда принадлежит некоторое строго определенно

Похожие работы

<< < 1 2 3 4 5 >