Pentium IV

При включенной системе управления страницами работает как описанный выше сегментный механизм, так и механизм управления страницами, однако при этом смысл

Pentium IV

Информация

Компьютеры, программирование

Другие материалы по предмету

Компьютеры, программирование

Сдать работу со 100% гаранией

 

 

 

 

 

 

 

 

Реферат

 

Pentium IV

 

 

 

Cтудента 315-а группы

Зайцева Александра

 

 

 

 

 

 

 

План:

 

1.0 Intel 80386, 80486 и Pentium

1.1 Средства поддержки сегментации памяти

1.2 Сегментно-страничный механизм

1.3 Средства вызова подпрограмм и задач

2.0 Новая архитектура Pentium 4

2.1 Как работают современные процессоры

2.2 Конвейерная архитектура: плюсы и минусы, проблемы и решения

2.3 Pentium 4: гиперконвейеризация

2.4 Простой конвейера: старые проблемы, умноженные на новые частоты

2.5 Предсказания должны сбываться!

2.6 Усовершенствованное внеочередное исполнение

2.7 Удвоенная внутренняя частота ALU

2.8 Сопроцессор

2.9 расширенный набор SIMD-команд под кодовым наименованием SSE-2

2.10 Платформа для Pentium 4

2.11 Системная шина

2.12 Кэш первого и второго уровня

2.13 Выводы

2.14 Список литературы

 

 

 

Средства аппаратной поддержки управления памятью и многозадачной среды в микропроцессорах Intel 80386, 80486 и Pentium

Процессоры Intel 80386, 80486 и Pentium с точки зрения рассматриваемых в данном разделе вопросов имеют аналогичные средства, поэтому для краткости в тексте используется термин "процессор i386", хотя вся информация этого раздела в равной степени относится к трем моделям процессоров фирмы Intel.

Процессор i386 имеет два режима работы - реальный (real mode) и защищенный (protected mode). В реальном режиме процессор i386 работает как быстрый процессор 8086 с несколько расширенным набором команд. В защищенном режиме процессор i386 может использовать все механизмы 32-х разрядной организации памяти, в том числе механизмы поддержки виртуальной памяти и механизмы переключения задач. Кроме этого, в защищенном режиме для каждой задачи процессор i386 может эмулировать 86 и 286 процессоры, которые в этом случае называются виртуальными процессорами. Таким образом, при многозадачной работе в защищенном режиме процессор i386 работает как несколько виртуальных процессоров, имеющих общую память. В отличие от реального режима, режим виртуального процессора i86, который называется в этом случае режимом V86, поддерживает страничную организацию памяти и средства многозадачности. Поэтому задачи, выполняющиеся в режиме V86, используют те же средства межзадачной защиты и защиты ОС от пользовательских задач, что и задачи, работающие в защищенном режиме i386. Однако максимальный размер виртуального адресного пространства составляет 1 Мб, как и у процессора i86.

Переключение процессора i386 из реального режима в защищенный и обратно осуществляется просто путем выполнения команды MOV, которая изменяет бит режима в одном из управляющих регистров процессора. Переход процессора в режим V86 происходит похожим образом путем изменения значения определенного бита в другом регистре процессора.

Средства поддержки сегментации памяти

Физическое адресное пространство процессора i386 составляет 4 Гбайта, что определяется 32-разрядной шиной адреса. Физическая память является линейной с адресами от 00000000 до FFFFFFFF в шестнадцатеричном представлении. Виртуальный адрес, используемый в программе, представляет собой пару - номер сегмента и смещение внутри сегмента. Смещение хранится в соответствующем поле команды, а номер сегмента - в одном из шести сегментных регистров процессора (CS, SS, DS, ES, FS или GS), каждый из которых является 16-битным. Средства сегментации образуют верхний уровень средств управления виртуальной памятью процессора i386, а средства страничной организации - нижний уровень. Средства страничной организации могут быть как включены, так и выключены (за счет установки определенного бита в управляющем регистре процессора), и в зависимости от этого изменяется смысл преобразования виртуального адреса, которое выполняют средства сегментации. Сначала рассмотрим случай работы средств сегментации при отключенном механизме управления страницами.

32-битное смещение определяет размер виртуального сегмента в 232=4 Гбайта, а количество сегментов определяется размером поля, отведенного в сегментном регистре под номер сегмента. Структура данных в сегментном регистре называется селектором, так как предназначена для выбора дескриптора определенного сегмента из таблиц дескрипторов сегментов. Дескриптор сегмента описывает все характеристики сегмента, необходимые для проверки правильности доступа к нему и нахождения его в физическом адресном пространстве. Процессор i386 поддерживает две таблицы дескрипторов сегментов - глобальную (Global Descriptor Table, GDT) и локальную (Local Descriptor Table, LDT). Глобальная таблица предназначена для описания сегментов операционной системы и сегментов межзадачного взаимодействия, то есть сегментов, которые в принципе могут использоваться всеми процессами, а локальная таблица - для сегментов отдельных задач. Таблица GDT одна, а таблиц LDT должно быть столько, сколько в системе выполняется задач. При этом активной в каждый момент времени может быть только одна из таблиц LDT.

Селектор состоит из трех полей - 13-битного поля индекса (номера сегмента) в таблицах GDT и LDT, 1-битного поля - указателя типа используемой таблицы дескрипторов и двухбитного поля текущих прав доступа задачи - CPL. Разрядность поля индекса определяет максимальное число глобальных и локальных сегментов задачи - по 8K (213) сегментов каждого типа, всего 16 K. С учетом максимального размера сегмента - 4 Гбайта - каждая задача при чисто сегментной организации виртуальной памяти работает в виртуальном адресном пространстве в 64 Тбайта.

Теперь проследим, как виртуальное пространство отображается на физическое пространство размером в 4 Гбайта при чисто сегментном механизме отображения. Итак, когда задаче необходимо получить доступ к ячейке физической памяти, то для выбора дескриптора виртуального сегмента используется значение селектора из соответствующего (в зависимости от команды и стадии ее выполнения - выборка кода команды или данных) сегментного регистра процессора. Значение поля типа таблицы указывает на то, какую таблицу нужно использовать - GDT или LDT. Рассмотрим сначала случай использования таблицы GDT. Для хранения таблиц GDT и LDT используется оперативная память (использование быстрой ассоциативной памяти процессора для хранения элементов этих таблиц рассмотрим позже). Для того, чтобы процессор смог найти в физической памяти таблицу GDT, ее полный 32-битный физический адрес (адрес начала таблицы), а также размер (поле в 16 бит) хранятся в специальном регистре процессора GDTR. Каждый дескриптор в таблицах GDT и LDT имеет размер 8 байт, поэтому максимальный размер этих таблиц - 64 К (8(8 К дескрипторов). Для извлечения нужного дескриптора из таблицы процессор складывает базовый адрес таблицы GDT из регистра GDTR со сдвинутым на 3 разряда влево (умножение на 8, в соответствии с числом байтов в элементе таблицы GDT) значением поля индекса из сегментного регистра и получает физический линейный адрес нужного дескриптора в физической памяти. Таблица GDT постоянно присутствует в физической памяти, поэтому процессор извлекает по этому адресу нужный дескриптор сегмента и помещает его во внутренний (программно недоступный) регистр процессора. (Таких регистров шесть и каждый из них соответствует определенному сегментному регистру, что значительно ускоряет работу процессора).

Дескриптор виртуального сегмента состоит из нескольких полей, основными из которых являются поле базы - базового 32-разрядного физического адреса начала сегмента, поле размера сегмента и поле прав доступа к сегменту - DPL (Descriptor Privilege Level). Сначала процессор определяет правильность адреса, сравнивая смещение и размер сегмента (в случае выхода за границы сегмента происходит прерывание типа исключение - exсeption). Потом процессор проверяет права доступа задачи к данному сегменту, сравнивая значения полей CPL селектора и DPL дескриптора сегмента. В процессоре i386 мандатный способ определения прав доступа (называемый также механизмом колец защиты), при котором имеется несколько уровней прав доступа, и объекты какого-либо уровня имеют доступ ко всем объектам равного уровня или более низких уровней, но не имеет доступа к объектам более высоких уровней. В процессоре i386 существует четыре уровня прав доступа - от 0-го, который является самым высоким, до 3-го - самого низкого. Очевидно, что операционная система может использовать механизм уровней защиты по своему усмотрению. Однако предполагается, что нулевой уровень будет использован для ядра операционной системы, а третий уровень - для прикладных программ, промежуточные уровни - для утилит и подсистем операционной системы, менее привилегированных, чем ядро.

Таким образом, доступ к виртуальному сегменту считается законным, если уровень прав селектора CPL выше или равен уровню прав сегмента DPL (CPL ( DPL). При нарушении прав доступа происходит прерывание, как и в случае несоблюдения границ сегмента. Далее проверяется наличие сегмента в физической памяти по значению бита P дескриптора, и если сегмент отсутствует в физической памяти, то происходит прерывание. При наличии сегмента в памяти вычисляется физический линейный адрес путем сложения базы сегмента и смещения и производится доступ к элементу физической памяти по этому адресу.

В случае, когда селектор указывает на таблицу LDT, виртуальный адрес преобразуется в физический аналогичным образом, но для доступа к самой таблице LDT добавляется еще один этап, так как в процессоре регистр LDTR указывает на размещение таблицы LDT

Похожие работы

1 2 3 4 5 > >>