Дедуктивные умозаключения в начальной школе

Информация - Математика и статистика

Другие материалы по предмету Математика и статистика

Для того чтобы скачать эту работу.
1. Подтвердите что Вы не робот:
2. И нажмите на эту кнопку.
закрыть



я себе представить такое мышление, которое совершается только индуктивно или только дедуктивно. Индукция в процессе реального опытного исследования осуществляется в неразрывной связи с дедукцией.

Под термином “дедукция” в узком смысле слова понимают также следующее:

1. Метод исследования, заключающийся в следующем: переход от знания более общих положений к знанию менее общих положений.

2. Форма изложения материала в книге, лекции, докладе, в беседе, когда от общих положений, правил, законов идут к менее общим положениям, правилам, законам.

Из всего выше сказанного мы можем сделать вывод, что учителю необходимо не только знать историю, но и знать определение дедукции, а так же правила ее построения.

1. 2. Общая характеристика дедукции и дедуктивных умозаключений.

ДЕДУКЦИЯ (лат. deductio - выведение) - в широком смысле слова - такая форма мышления, когда новая мысль выводится чисто логическим путем (по законам логики) из предшествующих мыслей. Такая последовательность мыслей называется выводом, а каждый компонент этого вывода является либо ранее доказанной мыслью, либо аксиомой, либо гипотезой. Последняя мысль данного вывода называется заключением.

Процессы дедукции на строгом уровне описываются в исчислениях математической логики.

В узком смысле слова, принятом в традиционной логике, под термином “дедукция” понимают дедуктивное умозаключение, то есть такое умозаключение, в результате которого получается новое знание о предмете или группе предметов на основании уже имеющегося некоторого знания о них, и применения к ним некоторого правила логики.

Дедуктивное умозаключение, являющееся предметом традиционной логики, применяется нами всякий раз, когда требуется рассмотреть какое - либо явление на основании уже известного нам общего положения и вывести в отношении этого явления необходимое заключение.

Структура дедуктивного умозаключения и принудительный характер его правил, заставляющих принять заключение, логически вытекающее из посылок, отобразили самые распространенные отношения между предметами материального мира: отношения рода, вида и особи, то есть общего, частного и единичного.

Именно это и отобразилось в дедуктивном умозаключении: единичное и частное подводится под общее.

Дедукция играет большую роль в нашем мышлении. Во всех случаях, когда конкретный факт мы подводим под общее правило и затем из общего правила выводим какое-то заключение в отношении этого конкретного факта, мы делаем заключение в форме дедукции. И если посылки истинны, то правильность вывода будет зависеть от того, насколько строго мы придерживались правил дедукции, в которых отобразились закономерности материального мира. Так, чтобы удостовериться в том, что заключение действительно вытекает из посылок, которые иногда даже не все высказываются, а только подразумеваются, мы придаем дедуктивному рассуждению форму силлогизма: находим большую посылку, подводим под нее меньшую посылку и затем выводим заключение. При этом обращаем внимание на то, насколько в умозаключении соблюдены правила силлогизма. Применение дедукции на основе формализации рассуждений облегчает нахождение логических ошибок и способствует более точному выражению мысли.

Анализируя практику мышления, можно обнаружить самые разнообразные виды умозаключений.

Они различаются:

  1. числом посылок - одна, две и более;
  2. типом суждений - простое или сложное;
  3. видом суждений - атрибутивное или реляционное;
  4. степенью вероятности вывода - достоверный или вероятный.

Всякое умозаключение вообще представляет собой логическое следование одних знаний из других, в зависимости от характера этого следования, от направленности хода мысли в умозаключении. Можно выделить три коренных, фундаментальных типа, которые и будут положены в основу последующего анализа выводного знания. Это дедукция, индукция и традукция.

Наряду с делением умозаключений по строгости вывода огромное значение имеет их классификация по направленности логического следования, то есть по характеру связи между знанием различной степени общности, выраженному в посылках и заключении. С этой точки зрения различают три вида умозаключений:

  1. дедуктивные (от общего знания к частному);
  2. индуктивные (от частного знания к общему);
  3. умозаключения по аналогии (от частного знания к частному).

1. 3. Структура дедуктивных умозаключений.

Умозаключение это способ получения нового знания на основе некоторого имеющегося.

Этот способ представляет собой переход от некоторых высказываний, фиксирующих наличие некоторых ситуаций в действительности, к новому высказыванию и соответственно к знанию о наличии ситуации, которую описывает это высказывание.

Переход от некоторых высказываний (посылок умозаключения) к высказыванию (заключению) в умозаключении может совершаться на основе интуитивного усмотрения какой-то связи - такие умозаключения называют содержательными; или путем логического выведения одного высказывания из других - это умозаключения формально-логического характера. В первом случае оно представляет собой, по существу, психический акт. Во втором случае его можно рассматривать как определенную логическую операцию. Последняя и является предметом изучения логики.

В содержательных умозаключениях мы оперируем, по существу, не с самими высказываниями, а прослеживаем связь между ситуациями действительности, которые эти высказывания представляют. Это и отличает содержательные умозаключения от умозаключений как операций логического характера, называемых иногда формализованными умозаключениями. В этих умозаключениях операции совершаются именно над высказываниями самими по себе, причем по правилам, которые вообще не зависят от конкретного содержания высказываний. Для содержательных умозаключений нет никаких определенных критериев этого рода и всегда возможен спор - рассуждает ли человек правильно или нет. Именно формализованные умозаключения являются предметом изучения логики. И именно их мы имеем в виду в дальнейшем.

В умозаключении, как мы уже говорили, различают посылки - высказывания, представляющие исходное знание, и заключение - высказывание, к которому мы приходим в результате умозаключения.

В естественном языке существуют слова и словосочетания, указывающие как на заключение (значит, следовательно, отсюда видно, поэтому), так и на посылки умозаключения (так как, поскольку, ведь). Представляя суждение в некоторой стандартной форме, в логике принято указывать вначале посылки, а потом заключение, хотя в естественном языке их порядок может быть произвольным: вначале заключение - потом посылки; заключение может находиться между посылками.

Понятие умозаключения как логической операции тесно связано с понятием логического следования. Учитывая эту связь, мы различаем правильные и неправильные умозаключения.

Умозаключение, представляющее собой переход от посылок к заключению, является правильным, если между посылками и заключением имеется отношение логического следования. В противном случае - если между посылками и заключением нет такого отношения - умозаключение неправильно.

В делении умозаключений на правильные и неправильные мы должны различать отношение логического следования двух видов дедуктивное и индуктивное. Первое гарантирует истинность заключения при истинности посылок. Второе - при истинности посылок - обеспечивает лишь некоторую степень правдоподобия заключения (некоторую вероятность его истинности). Соответственно этому умозаключения делятся на дедуктивные и индуктивные. Первые иначе еще называют демонстративными (достоверными), а вторые - правдоподобными (проблематичными).

Мы можем заключить, что учителю, как специалисту, необходимо знать и уметь строить умозаключения. Именно от качества знания этого вопроса зависит реализация поставленных нами целей и задач. Но для того, чтобы более подробно рассмотреть этот вопрос на практике, нам надо увидеть роль и место, занимаемое дедуктивными умозаключениями в курсе математики начальных классов.

1. 4. Дедуктивные рассуждения в курсе математики начальных классов.

Особенность дедуктивных рассуждений в начальных классах заключается, прежде всего, в их тесной связи с индуктивными. Собственно поэтому и создается впечатление, что дедуктивные рассуждения как таковые отсутствуют в курсе математики начальных классов. Здесь дело в том, что для сознательного проведения дедуктивных умозаключений при решении задач необходима большая подготовительная работа, направленная на сознательное усвоение общего вывода, свойства, закономерности. Этого требуют особенности мышления младшего школьника, которое отличается конкретностью. Но сознательное усвоение общего вывода позволяет пользоваться в дальнейшем дедуктивным рассуждением. Для того чтобы учащиеся более осознанно могли пользоваться дедуктивными умозаключениями при решении задач, необходимо проводить пропедевтику по исследуемой теме. Начинать надо с самого элементарного и далее продвигаться к более сложным заданиям, таким, как решение нестандартных математических задач.

Например: приступая к составлению таблиц, необходимо сосредоточить внимание учащихся на общем выводе. Уже в самом начале обучения мы проводим пропедевтику использования дедуктивных умозаключений. Вот образец рассуждений:

  1. Если к числу прибавим один, то получим следующее число;
  2. К одному прибавим один, получим следующее число два;
  3. К двум прибавим один, получим следующее число три.

При решении примеров на порядок действий рассуждения учащихся носят дедуктивный характер. В качестве общей посылки выступает правило выполнения порядка действий в выражении, в качестве частной конкретное числовое выражени