Дедуктивные и индуктивные умозаключения

Один из героев Мольера только случайно обнаружил, что всю жизнь говорит прозой. Так и с навыками последовательного и аргументированного рассуждения,

Дедуктивные и индуктивные умозаключения

Курсовой проект

Философия

Другие курсовые по предмету

Философия

Сдать работу со 100% гаранией
i>представляет собой введение в умозаключение отрицания. Оно широко применяется как в беседах, происходящих в форме спора, дискуссии, полемики, так и при повседневном обыденном общении. Его логическая формула такова: «Если из допущений и посылок выводится противоречие, то из допущения выводится отрицание посылки». Например, на одном из судебных заседаний, где рассматривалось, дело о хищении гражданином Ивановым В. пяти мешков картофеля с поля фермера Зырянова А. и факт совершения противоправного деяния обвиняемым был фактически подтвержден, адвокат в своем выступлении сказал следующее: « Уважаемый суд! Суть дела очевидна и ясна . Но виноват ли Иванов в совершении правонарушения? Мы ведь, россияне, кто? Те же «винтики», что и прежде. Ведь правительство советует потуже затянуть пояса, утверждая при этом , что оно не враг своему народу. Разве невозможно понять это? Да вот… получается, что невозможно . Вместе с тем количество богатых в новой России относительно количества прочих граждан в процентном отношении невыразимо. Именно поэтому, уважаемый суд, мой подзащитный больше всего невиновен в совершенном деянии, чем виновен. Прошу суд оправдать его ». ( Московский комсомолец 2001. - 10 октября).

Рассуждение от противного применяется тогда, когда нет никаких условий и возможностей построить прямые умозаключения. Этот подвид непрямых выводов нередко используется в нашей жизни, хотя надо помнить, что он даёт вероятное умозаключение.

Итак, мы рассмотрели логический механизм прямых и непрямых выводов дедуктивных умозаключений. При этом было показано, как они наполняются конкретным содержанием, взятым из области деятельности юриста и общественных отношений. Мною был представлен своеобразный механизм развёртывания умозаключений и получения истинных и вероятностных выводов. Индуктивные умозаключения и специфика их использования их в судебной деятельности.

Общественная практика, реальная человеческая деятельность обуславливают необходимость логического перехода от знания частного к знанию общему, тем более что в природе и обществе не существует самостоятельно и вне отдельного. Само же отдельное не существует без общего. Любой вид деятельности, в том числе и судебная практика, требует таких переходов. Чтобы осуществлять этот логический процесс, следует познакомиться с индукцией (от латинского слова induction - наведение).

Индуктивное умозаключение - это такое умозаключение, в котором на основании принадлежности признака отдельным предметам или частям некоторого класса делают вывод о его принадлежности классу в целом.

Индуктивные умозаключения, как и аналогия, обычно дают нам не достоверные, а лишь вероятные (правдоподобные) заключения. Это форма эмпирических обобщений. Индуктивное умозаключение расширяет сферу знания, выраженного в посылках. Индукция бывает полная, неполная и математическая (она связана со свойствами ряда натуральных чисел и построена на аксиомах). Основная функция индуктивных выводов - генерализация, то есть получение общих суждений. По характеру они могут представлять простейшее обобщение каждодневной практики, эмпирические обобщения в науке (доже на уровне законов), универсальные суждения, выражающие всеобщие законы науки.

В индуктивном умозаключении различают три составных элемента: исходное знание; обосновывающее знание; выводное знание. Из этого следует требования, которые обеспечивают правильность вывода. Их два. Во - первых, индуктивное обобщение прочно лишь тогда, когда оно производится по существенным признакам. Во - вторых, индуктивное обобщение распространяется только на объективно сходные, однородные предметы.

Рассмотрим основное содержание выделенных видов индукции. Заключение при полной индукции делается на основе изучения всех предметов данного класса. При истинности посылок заключение в полной индукции является достоверно истинным.

Полная индукция - это умозаключение, в котором на основе повторяемости признака у каждого из явлений определённого класса делается вывод о принадлежности этого признака всему классу явлений.

Полную индукцию можно применять, когда появляется возможность иметь дело с замкнутым классом предмета, число элементов в котором является конечным и легко обозримым. Она предлагает наличие следующих условий: точное знание числа предметов или явлений, подлежащих изучению; убеждение, что признак принадлежит каждому элементу класса; небольшое число элементов изучаемого класса.

Частным случаем полной индукции можно считать единогласное признание вины подсудимого присяжными заседателями на судебном заседании по уголовным делам. В данной ситуации происходит проявление полной индукции при выявлении виновности или невиновности обвиняемого присяжными заседателями. Например, после ознакомления с содержанием дела, заслушивание показаний свидетелей, речи прокурора, адвоката, последнего слова подсудимого каждый судебный заседатель может признать доказанным факт общественно опасного деяния обвиняемого, а потом единогласно принять решение о его виновности. Полная индукция, касающаяся таких конечно обозримых множества признаков, довольно обыкновенна. Нетривиальность полной индукции и придаёт рассмотрение совокупности не отдельного множества признаков, а всех видов, форм, типов признаков (свойств, черт и так далее) некоторого рода.

Познавательная роль умозаключений полной индукции проявляется в формировании нового знания о классе явлений. Это не просто перенос признака с отдельных предметов или явлений на класс в целом, а это обобщение, представляющее собой новую ступень знания по сравнению с единичными посылками. Так, при выявлении характера кривой , по которой движутся планеты вкруг Солнца, в астрономии первоначально было установлено, что Марс, Венера, Юпитер, Сатурн, Земля обращаются по эллипсообразным орбитам, с открытием новых планет было установлено, что Уран, Нептун, Плутон и Меркурий обращаются по таким же орбитам. В итоге в форме полной индукции было сделано обобщение, что все планеты Солнечной системы обращаются по эллипсообразным орбитам. Это новое значение имеет принципиально иное значение, нежели констатация факта эллипсообразного движения каждой из планет. Во-первых, обобщающий вывод оказывает влияние на развитие понятия « планета солнечной системы», поскольку в его содержание может быть включен новый признак - обращение вокруг Солнца эллипсообразное. Во-вторых, этот признак может служить основой для выявления других существенных характеристик всего класса явлений, например, для решения вопроса о механизме возникновения планет Солнечной системы.

Примером индукции с отрицательным заключением может быть случай, когда, например исчерпывающим перечислением разновидностей действий, составляющим состав преступления, исключается деяние конкретного человека из соответствующей оценки как преступление. В судебном исследовании нередко используются доказательные рассуждения в форме полной индукции с отрицательными заключениями. Например, исчерпывающим перечислением разновидностей исключается определённый способ совершения преступления, способ проникновения злоумышленника к месту совершения преступления, тип оружия, которым было нанесено ранение.

В математике специальным видом индукции является математическая индукция, которую так же иногда называют полной. Она отличается от ранее рассмотренной полной индукции тем, что имеет дело с бесконечным множеством предметов, но одновременно похожа на неё, ибо даёт достоверный результат. Математическая индукция основывается на строении и свойствах натурального ряда чисел. Хотя этот ряд бесконечен, он построен на очень простом законе: каждое следующее число больше предыдущего ровно на единицу. Это свойство натурального ряда позволяет доказывать общие утверждения, основываясь на следующей процедуре. Сначала мы доказываем, что нужное нам свойство присуще первому члену натурального ряда числу «1», а затем показываем, что из предложения о том, что это свойство присуще некоторому произвольному числу, назовем его «n», следует, что оно присуще и следующему за ним числу, то есть «n+1». Таким образом, мы получаем способ доказательства присущности интересующего нас свойства для любого натурального числа.

Завершая рассмотрения характерных свойств полной индукции, отмечая непререкаемую истинность получаемых в полной индукции результатов, выделим тот факт, что её далеко не всегда можно применять в реальной жизни, в том числе и в судебной практике. В большинстве случаев, когда мы не можем зафиксировать все случаи наблюдаемого явления, заключение делаем для всех, применяют неполную индукцию.

Неполная индукция - это умозаключение, в котором на основе принадлежности признака некоторым элементам или частям класса делают вывод о его принадлежности классу в целом.

Неполная индукция есть индуктивное умозаключение в строгом смысле содержания данного понятия.

Пример неполной индукции:

 

Гелий имеет валентность - 0

Неон имеет валентность - 0,

Аргон имеет валентность - 0

Гелий, неон и аргон - инертные газы.

Следовательно, все инертные газы имеют валентность - 0.

 

В данном рассуждении на основе обнаружения нулевой валентности у трёх представителей инертных газов делается заключение, что этим свойством обладают все инертные газы.

По способу отбора посылок, обоснования заключения неполная индукция делится на три вида: индукцию через простое пересечение (популярная индукция); научную индукцию на основе установления причинной связи; статистические обобщения.

Последний, особый, вид умозаключений связан с анализом массовых событий. К таким событиям, связанным с деятельностью юриста, можно отнести: распространение заболеваемости в процессе эпидемий и других случаев; смертность людей; массовые мигра

Лучшие

Похожие работы

<< < 1 2 3 4 5 6 >