OLAP технолрогии в менеджменте

Для анализа рынка и более точного прогнозирования участников рынка можно разделить на основные классы: отечественные производители лекарственных средств ("Дарница", "Артериум",

OLAP технолрогии в менеджменте

Курсовой проект

Компьютеры, программирование

Другие курсовые по предмету

Компьютеры, программирование

Сдать работу со 100% гаранией
есь класс СУБД. В качестве такого учебного объекта мы выберем СУБД Microsoft Access (далее Access), входящую в пакет Microsoft Office. Практически все СУБД позволяют добавлять новые данные в таблицы. С этой точки зрения СУБД не отличаются от программ электронных таблиц (Excel). Однако существуют 3 принципиальных отличия между СУБД и программами электронных таблиц:

  1. СУБД разрабатываются с целью обеспечения эффективной обработки больших объемов информации, намного больших, чем те, с которыми справляются электронные таблицы;
  2. СУБД может легко связывать две таблицы так, что для пользователя они будут представлены одной таблицей. Реализовать такую возможность в электронных таблицах практически невозможно;
  3. СУБД минимизирует общий объем базы данных. Для этого таблицы, содержащие повторяющиеся данные, разбиваются на несколько связанных таблиц.

Т.о. приложение Access является мощной и высокопроизводительной 32-разрядной СУБД. В Access реализована надежная защита от несанкционированного доступа к файлам.

Несмотря на то, что Access является мощной и сложной системой, его использование не сложно для непрофессиональных пользователей.

Целью создания базы данных в данной курсовой работе является оперативное получение необходимой информации.

Представляемая база данных будет содержать 3 таблицы: «Препараты», «Производители» и «Доля продаж за 3 кв 2007г.»

 

Первая таблица «Препараты» имеет следующую структуру:

Имя поляТип данныхРазмер поляОбязательноеИндексированноеКод препаратасчётчикДлинное целоедада (совпадения не допускаются)Наименованиетекстовый20дада (совпадения допускаются)

Ключевым полем в данной таблице является поле «Код препарата», т.к. оно уникально.

Вторая таблица «Производители» имеет следующий вид:

 

Имя поляТип данныхРазмер поляОбязательноеИндексированноеКод производителясчётчикДлинное целоедада (совпадения не допускаются)Код препаратамастер подстановокДлинное целоедада (совпадения допускаются)Странамастер подстановокДлинное целоедада (совпадения допускаются)Наименованиетекстовый20дада (совпадения допускаются)

Ключевым полем в данной таблице является поле «Код производителя», т.к. оно уникально.

Третья таблица «Доля продаж за 3 кв 2007 г»:

Имя поляТип данныхРазмер поляОбязательноеИндексированноеКод препаратаМастер подстановокДлинное целоедада (совпадения не допускаются)Код производителясчётчикДлинное целоедада (совпадения допускаются)НаименованиеМастер подстановокДлинное целоедада (совпадения допускаются)Доля рынка в деньгахчисловойдвойное с плавающей точкойдада (совпадения допускаются)

Связи между тремя таблицами представлены следующим образом:

 

 

1.3 OLAP-технологии в подсистеме анализа объекта исследований.

 

Для начала расшифруем: OLAP - это Online Analytical Processing, т. е. оперативный анализ данных. 12 определяющих принципов OLAP сформулировал в 1993 г. Е. Ф. Кодд - "изобретатель" реляционных БД. Позже его определение было переработано в так называемый тест FASMI, требующий, чтобы OLAP-приложение предоставляло возможности быстрого анализа разделяемой многомерной информации (подробнее).

Тест FASMI:

  1. Fast (Быстрый) - анализ должен производиться одинаково быстро по всем аспектам информации. Приемлемое время отклика - 5 с или менее;
  2. Analysis (Анализ) - должна быть возможность осуществлять основные типы числового и статистического анализа, предопределенного разработчиком приложения или произвольно определяемого пользователем;
  3. Shared (Разделяемой) - множество пользователей должно иметь доступ к данным, при этом необходимо контролировать доступ к конфиденциальной информации;
  4. Multidimensional (Многомерной) - это основная, наиболее существенная характеристика OLAP;
  5. Information (Информации) - приложение должно иметь возможность обращаться к любой нужной информации, независимо от ее объема и места хранения.

OLAP предоставляет удобные быстродействующие средства доступа, просмотра и анализа деловой информации. Пользователь получает естественную, интуитивно понятную модель данных, организуя их в виде многомерных кубов (Cubes). Осями многомерной системы координат служат основные атрибуты анализируемого бизнес-процесса. Например, для продаж это могут быть товар, регион, тип покупателя. В качестве одного из измерений используется время. На пересечениях осей - измерений (Dimensions) - находятся данные, количественно характеризующие процесс - меры (Measures). Это могут быть объемы продаж в штуках или в денежном выражении, остатки на складе, издержки и т. п. Пользователь, анализирующий информацию, может "разрезать" куб по разным направлениям, получать сводные (например, по годам) или, наоборот, детальные (по неделям) сведения и осуществлять прочие манипуляции, которые ему придут в голову в процессе анализа.

Все, что говорилось выше про OLAP, по сути, относилось к многомерному представлению данных. Многомерность в OLAP-приложениях может быть разделена на три уровня:

  1. Многомерное представление данных - средства конечного пользователя, обеспечивающие многомерную визуализацию и манипулирование данными; слой многомерного представления абстрагирован от физической структуры данных и воспринимает данные как многомерные;
  2. Многомерная обработка - средство (язык) формулирования многомерных запросов (традиционный реляционный язык SQL здесь оказывается непригодным) и процессор, умеющий обработать и выполнить такой запрос;
  3. Многомерное хранение - средства физической организации данных, обеспечивающие эффективное выполнение многомерных запросов.

Первые два уровня в обязательном порядке присутствуют во всех OLAP-средствах. Третий уровень, хотя и является широко распространенным, не обязателен, так как данные для многомерного представления могут извлекаться и из обычных реляционных структур; процессор многомерных запросов в этом случае транслирует многомерные запросы в SQL-запросы, которые выполняются реляционной СУБД.

Конкретные OLAP-продукты, как правило, представляют собой либо средство многомерного представления данных, OLAP-клиент (например, Pivot Tables в Excel 2000 фирмы Microsoft или ProClarity фирмы Knosys), либо многомерную серверную СУБД, OLAP-сервер (например, Oracle Express Server или Microsoft OLAP Services).

Как уже говорилось выше, средства OLAP-анализа могут извлекать данные и непосредственно из реляционных систем. Такой подход был более привлекательным в те времена, когда OLAP-серверы отсутствовали в прайс-листах ведущих производителей СУБД. Но сегодня и Oracle, и Informix, и Microsoft предлагают полноценные OLAP-серверы и т.о. могут купить (точнее, обратиться с соответствующей просьбой к руководству компании) OLAP-сервер той же марки, что и основной сервер баз данных.

OLAP-серверы, или серверы многомерных БД, могут хранить свои многомерные данные по-разному. Прежде чем рассмотреть эти способы, нам нужно поговорить о таком важном аспекте, как хранение агрегатов.

Термин "OLAP" неразрывно связан с термином "хранилище данных" (Data Warehouse). Хранилище данных - это предметно-ориентированное, привязанное ко времени и неизменяемое собрание данных для поддержки процесса принятия управляющих решений. Данные в хранилище попадают из оперативных систем (OLTP-систем), которые предназначены для автоматизации бизнес-процессов. Кроме того, хранилище может пополняться за счет внешних источников, например статистических отчетов. Таким образом, задача хранилища - предоставить "сырье" для анализа в одном месте и в простой, понятной структуре.

Подытоживая, можно определить OLAP как совокупность средств многомерного анализа данных, накопленных в хранилище.

Теперь о различных вариантах хранения информации. Как детальные данные, так и агрегаты могут храниться либо в реляционных, либо в многомерных структурах. Многомерное хранение позволяет обращаться с данными как с многомерным массивом, благодаря чему обеспечиваются одинаково быстрые вычисления суммарных показателей и различные многомерные преобразования по любому из измерений. Некоторое время назад OLAP-продукты поддерживали либо реляционное, либо многомерное хранение. Сегодня, как правило, один и тот же продукт обеспечивает оба этих вида хранения, а также третий вид - смешанный. Применяются следующие термины:

  1. MOLAP (Multidimensional OLAP) - и детальные данные, и агрегаты хранятся в многомерной БД. В этом случае получается наибольшая избыточность, так как многомерные данные полностью содержат реляционные;
  2. ROLAP (Relational OLAP) - детальные данные остаются там, где они "жили" изначально - в реляционной БД; агрегаты хранятся в той же БД в специально созданных служебных таблицах;
  3. HOLAP (Hybrid OLAP) - детальные данные остаются на месте (в реляционной БД), а агрегаты хранятся в многомерной БД.

Каждый из этих способов имеет свои преимущества и недостатки и должен применяться в зависимости от условий - объема данных, мощности реляционной СУБД и т. д.

При хранении данных в многомерных структурах возникает потенциальная проблема "разбухания" за счет хранения пустых значений. Ведь если в многомерном массиве зарезервировано место под все возможные комбинации меток измерений, а реально заполнена лишь малая часть (например, ряд продуктов продается только в небольшом числе регионов), то большая часть куба будет пустовать, хотя место будет занято. Современные OLAP-продукты умеют справляться с этой проблемой.

 

2.1. Разработка базы данных объёмов продаж на фармацевтическом рынке с использованием MS Access .

 

Ос

Похожие работы

< 1 2 3 4 > >>