Министерство образования и науки РФ
Иркутский государственный технический университет
Гидромеханические процессы химической и пищевой технологии
Методические указания по лабораторным работам
по курсам « Процессы и аппараты химической технологии» и
«Процессы и аппараты пищевых производств»
Иркутск 2004г.
Определение гидравлических сопротивлений
трубопровода и арматуры
Цель работы: Экспериментально определить гидравлическое сопротивление контрольных участков трубопровода и арматуры. Сопоставить справочные и экспериментальные значения коэффициентов трения и местных сопротивлений.
Основные определения и теория процесса
Трубопроводная сеть включает в себя прямые участки труб и местные сопротивления, в которых поток жидкости (газа) изменяет свою скорость по величине и направлению. К местным сопротивлениям относятся вентили, краны, задвижки, диафрагмы, повороты труб, внезапные и плавные расширения или сужения и т.д.
При движении среды по трубопроводной сети, вследствие вихреобразования и трения, энергия давления переходит в другие ее виды, в результате чего давление по длине сети падает. Если выбрать участок трубопровода и измерить давление на его границах, то разность измеренных величин будет потерей давления или гидравлическим сопротивлением данного участка.
Гидравлическое сопротивление прямого участка сети без местных сопротивлений рассчитывается по формуле:
(1)
где ΔРтр потеря давления на трение в прямой трубе, Па;
l длина трубы, м;
d внутренний диаметр трубы, м;
ρ плотность жидкости, кг/м3;
w скорость потока, м/с.
Коэффициент трения λ является безразмерной величиной и зависит от режима движения жидкости. Формулы для его расчета приведены в [1].
Потеря давления на трение в змеевике ΔРзм больше, чем в прямой трубе ΔРтр:
ΔРзм = ΔРтр ·ψ(2)
Безразмерный поправочный коэффициент ψ>1 вычисляют по формуле:
Ψ = 1+ 3,54
где d внутренний диаметр трубы, м;
D диаметр витка змеевика, м.
Потеря давления в местных сопротивлениях рассчитывается по формуле:
(3)
Коэффициенты местного сопротивления зависят от вида сопротивления и берутся из справочных таблиц [1].
Описание установки
Вода из напорного бака 1 с помощью центробежного насоса 2 подается через систему различных гидравлических сопротивлений и поступает обратно в бак. Бак установлен выше насоса и питается от общего коллектора холодной воды. Поступив в первую линию, поток проходит сначала диафрагму 3, затем плавное расширение и плавное сужение 4. Далее поступает в четырехвинтовой горизонтально расположенный змеевик 5 диаметром 480мм. Затем проходит внезапное расширение и внезапное сужение потока 6. Диаметр основных труб составляет 55х2,5 мм. Диаметр большой трубы 100х2,5 мм.
На разветвлении потока установлен коллектор, из которого жидкость с помощью задвижек 8, 12, 13 может быть направлена по второй, третьей или четвертой линии. На второй линии установлены дополнительно кран 9 и вентили 10, 11. На четвертой линии имеется прямой участок трубы 14 длиной 5м, предназначенный для исследования сопротивления трения. Запорная арматура имеет условный проход 50 мм.
Изменение скорости движения жидкости в трубопроводе достигается регулировкой расхода с помощью вентиля на линии нагнетания насоса. Расход воды измеряется диафрагмой 3, по показаниям дифференциального манометра 7. Потери давления при прохождении потока по прямому участку трубы, а также через арматуру, сужения и расширения измеряются тем же дифманометром, который работает в комплекте со вторичным прибором.
Порядок выполнения работы
- Заполнить напорный бак водой.
- Открыть вентили на всасывающем и нагнетательном трубопроводе центробежного насоса.
- Закрыть задвижки 8, 12 и открыть задвижку 13.
- Включить центробежный насос.
- Измерить перепад давления на диафрагме 3 и определить расход воды по графику.
- Измерить поочередно перепады давления на плавном расширении 4, змеевике 5, резком расширении 6, прямом участке 14. Результаты измерений занести в таблицу.
Рисунок 1- Схема Установки
1-напорный бак
2-центробежный насос
3-диафрагма
4-плавное расширение
5-змеевик
6-внезапное расширение
7-вентили нормальные
- Закрыть задвижку 13 и открыть задвижку 8 и выполнить замеры перепада давления на кране 9 и вентилях 10, 11. Результаты измерений занести в таблицу 1.
- Далее с помощью вентиля на нагнетательном трубопроводе изменяют расход воды и выполняют все измерения для второго опыта.
Таблица 1 - Измеренные величины
Наименование величинОбозначениеРазмерностьЗначениеРасход воды по диафрагмеVм3/сПотери давления
- на прямом участке
- на плавном расширении
- на змеевике
- на резком расширении
- на резком сужении
- на кране
- на вентиле
- на диафрагме
ΔРтр.
ΔРпл.р.
ΔРзм.
ΔРр.р.
ΔРр.с.
ΔРкр.
ΔРвн
ΔРд.
Па
Па
Па
Па
Па
Па
Па
Па
Обработка результатов измерения и содержание отчета
- На основе перепада давления на диафрагме по градуировочному графику определяют расход воды V, м3/с.
- По уравнению расхода V = w · S рассчитывают скорость потока на контрольных участках трубопроводной сети (для случаев сужения и расширения расчетную скорость находят по наименьшему сечению трубопровода).
- Определяют число Рейнольдса
Re
- Исходя из опытных значений потери давления на различных участках трубопровода с помощью уравнений (1) и (2) рассчитывают экспериментальные значения λ и
для обоих опытов и полученные результаты заносят в таблицу 2. Для рассматриваемого змеевика ламинарный режим при Re ≤ 9000 [1].
- По графику или соответствующему уравнению устанавливают величину λ при шероховатости трубы е = 0,2 мм [1].
- Находят величины
по данным таблиц в приложении [1]. Значения λ и заносят в таблицу 2, в графу справочные данные.
- Сопоставляют справочные и экспериментальные значения коэффициентов трения и местных сопротивлений. Отчет должен включать формулировку цели работы, схему установки, описание методики измерений и расчеты необходимых параметров.
Таблица 2 Рассчитанные величины
Наименование
величинОбозначениеРазмерностьЗначениеСправочные данныеСкорость потокаWм/сЧисло РейнольдсаReКоэффициент трения:
- прямой трубы
- змеевикаλ тр.
λ зм.Коэффициент местных сопротивлений:
- плавного расширения
- резкого расширения
- резкого сужения
- крана
- вентиля
- диафрагмы
пл.р.
р.р.
р.с.
кр.
вн.
д.
ИЗУЧЕНИЕ ГИДРОДИНАМИКИ ТАРЕЛЬЧАТЫХ
И НАСАДОЧНЫХ КОЛОНН
Цель работы: Экспериментально определить гидравлическое сопротивление сухих и орошаемых контактных элементов тарелок и насадок. Сопоставить измеренные величины с рассчитанными по эмпирическим зависимостям.
Основные определения и теория процесса
Тарельчатые и насадочные колонны являются широко распространенными аппаратами в химической и других смежных отраслях промышленности. В них осуществляется взаимодействие восходящих потоков газа или пара с жидкостью, стекающей по колонне вниз (абсорбция, ректификация).
Тарельчатые колонны работают в основном в барботажном режиме, когда пар или газ проходит через слой жидкости на тарелке в виде пузырей или струй.
Насадочные колонны работают в большинстве случаев как поверхностные аппараты, когда пар или газ взаимодействуют с жидкостью, стекающей в виде пленок по насадке.
Существует большое разнообразие контактных тарелок: колпачковые, ситчатые, клапанные, струйные и т.д. Их устройство и принцип работы описаны в [2].
Наиболее распространенной насадкой являются кольца Рашига, которые изготавливаются из керамики и металла. Кроме них используются также кольца Паля, спиральная насадка и др. [2].
Назначение тарелок и насадки в колонных аппаратах состоит в том, чтобы создать хороший контакт газа и жидкости и тем самым обеспечить эффективное протекание процессов тепло- и массообмена между взаимодействующими фазами.
Для того чтобы обеспечить перемещение газа через колонну, необходимо затратить мощность на преодоление гидравлических сопротивлений.
N = Δ P · V (1)
где Δ P гидравлическое сопротивление колонны, Па;
V объемный расход газа, м3/с.
Для колпачковых тарелок гидравлическое сопротивление рассчитывают как сумму трех составляющих:
Δ Pт = Δ Pсух. + Δ Pσ + Δ Pс.т. (2)
где Δ Pсух = сопротивление сухой тарелки, Па;
Δ Pσ = сопротивление связанное с преодолением сил
поверхностного натяжения жидкости, Па;
Δ Pст =