Гидроаккумулирующие электростанции и перспектива их развития

Электроэнергия, вырабатываемая недогруженными электростанциями энергосистемы (в основном в ночные часы суток), используется ГАЭС для перекачивания насосами воды из нижнего водоёма

Гидроаккумулирующие электростанции и перспектива их развития

Информация

Физика

Другие материалы по предмету

Физика

Сдать работу со 100% гаранией

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

Братский государственный университет

Кафедра Электроэнергетики и Электротехники

 

 

 

 

 

 

Реферат

 

по дисциплине: Общая энергетика

тема: Гидроаккумулирующие электростанции и перспектива их развития

 

 

 

 

 

 

 

 

 

 

 

 

 

Братск, 2012

Введение

 

Цель выполнения работы - Описать принцип работы гидроаккумулирующих электростанций (ГАЭС), проанализировать их роль в оптимизации режимов работы электроэнергетических систем; рассмотреть перспективы развития. II. Гидроаккумулирующие электростанции и перспективы их развития

1. Роль ГАЭС в работе энергосистем

 

Из всех видов потребляемой в современном мире энергии наибольшее распространение имеет электроэнергия. Это объясняется следующими причинами:

электроэнергия легко превращается в любых количествах во многие другие используемые формы энергии;

электроэнергия с приемлемыми потерями практически мгновенно может быть передана на любое расстояние;

производство электроэнергии можно легко концентрировать на электростанциях любой мощности;

при распределении электроэнергию можно дробить на произвольные сколь угодно большие или малые порции (от мегаватт в электрометаллургии до микроватт в электронике);

электроэнергия обладает высокой экологической чистотой, процесс ее использования не сопровождается выбросами в природную среду.

Вместе с тем процесс производства электроэнергии коренным образом отличается от любого другого производственного процесса. Это отличие состоит в том, что в электроэнергетике цикл производства, распределения и потребления электроэнергии осуществляется одновременно. Поэтому при планировании производства (выработки) электроэнергии необходимо учитывать и режим потребления электроэнергии во времени, то есть график электрической нагрузки.

Суточная неравномерность нагрузки, наличие пиков и резких снижений уровня электропотребления создает технические проблемы для энергопроизводителей, связанные с необходимостью обеспечения соответствия производства и потребления электроэнергии.

 

Для согласования этих процессов возможно использование следующих способов управления:

«подстраивание» процесса производства под процесс потребления и наоборот;

накопление излишков энергии в период минимального потребления (провал графика нагрузок) и ее выдача в период максимального потребления, то есть аккумулирование энергии.

Первый способ общепринят, но связан с усложнением процесса эксплуатации энергетических предприятий и ухудшением технико-экономических показателей производителей электроэнергии; при этом также затрагиваются интересы потребителей. Второй способ в этом отношении более перспективен и в последние десятилетия в мировой практике находит все более широкое применение.

Аккумулирование энергии представляет собой ее накопление при возникновении в энергосистеме излишков генерирующей мощности для перераспределения во времени и использования в соответствии с потребностями энергосистемы. Потребность в аккумулировании вызывается не только неравномерностью электропотребления, но технической сложностью и неэкономичностью быстрого изменения рабочей мощности крупных тепловых и атомных электростанций в соответствии с колебаниями суточной и недельной нагрузки, а также необходимостью наличия высокоманевренной мощности при аварийных и нештатных ситуациях в энергосистеме.

Существует достаточно много практически реализуемых систем аккумулирования, предполагающих сохранение энергии в виде тепловой, механической или электрической энергии.

Аккумулирование энергии для целей электроснабжения наиболее часто осуществляется системами с электрохимическими аккумуляторами и гидроаккумулирования. Первые чаще используются в небольших автономных системах электроснабжения (например, электроснабжение узлов связи, вычислительных центров и т. п.), а вторые - в энергообъединениях с помощью ГАЭС - Гидроаккумулирующих электростанций.

Практически во всем мире в современных энергообъединениях почти исключительное распространение получило гидроаккумулирование - благодаря соизмеримости мощности и количества перераспределяемой энергии ГАЭС с потребностями энергосистем.

Проблема покрытия пиковых нагрузок и прохождения периодов сниженного электропотребления в последние десятилетия во всем мире становится все более актуальной в связи с разуплотнением графиков нагрузок современных энергосистем, увеличением количества маломаневренных турбоагрегатов повышенной мощности ТЭС и АЭС, а также значительной степенью освоения экономически выгодных для использования гидроресурсов.

Одним из возможных и наиболее эффективных способов решения этой проблемы является строительство и использование мощных ГАЭС, которые характеризуются уникальным сочетанием функций пиковой станции и потребителя-регулятора, способного в период ночного провала суточного графика нагрузок обеспечить потребление избыточной электрической мощности теплофикационного оборудования ТЭС и АЭС.

 

. Принцип действия ГАЭС

 

Гидроаккумулирующая электростанция (ГАЭС), насосно-аккумулирующая электростанция, гидроэлектрическая станция, принцип действия (аккумулирования) которой заключается в преобразовании электрической энергии, получаемой от др. электростанций, в потенциальную энергию воды; при обратном преобразовании накопленная энергия отдаётся в энергосистему главным образом для покрытия пиков нагрузки. Гидротехнические сооружения ГАЭС состоят из двух бассейнов, расположенных на разных уровнях, и соединительного трубопровода. Гидроагрегаты, установленные в здании ГАЭС у нижнего конца трубопровода, могут быть трёхмашинными, состоящими из соединённых на одном валу обратимой электрической машины (двигатель-генератор), гидротурбины и насоса, или двухмашинными - обратимая электромашина и обратимая гидромашина, которая в зависимости от направления вращения может работать как насос или как турбина. В конце 60-х гг. 20 в. на вновь вводимых ГАЭС стали устанавливать более экономичные двухмашинные агрегаты.

Схема гидроаккумулирующей электростанции:

- верхний аккумулирующий бассейн; 2 - здание электростанции; 3 - река; 4 - водовод; 5 - плотина

 

Электроэнергия, вырабатываемая недогруженными электростанциями энергосистемы (в основном в ночные часы суток), используется ГАЭС для перекачивания насосами воды из нижнего водоёма в верхний, аккумулирующий бассейн. В периоды пиков нагрузки вода из верхнего бассейна по трубопроводу подводится к гидроагрегатам ГАЭС, включенным на работу в турбинном режиме; выработанная при этом электроэнергия отдаётся в сеть энергосистемы, а вода накапливается в нижнем водоёме. Количество аккумулированной электроэнергии определяется ёмкостью бассейнов и рабочим напором ГАЭС. Верхний бассейн ГАЭС может быть искусственным или естественным (например, озеро); нижним бассейном нередко служит водоём, образовавшийся вследствие перекрытия реки плотиной. Одно из достоинств ГАЭС состоит в том, что они не подвержены воздействию сезонных колебаний стока. Гидроагрегаты ГАЭС в зависимости от высоты напора оборудуются поворотно-лопастными, диагональными, радиально-осевыми и ковшовыми гидротурбинами. Время пуска и смены режимов работы ГАЭС измеряется несколькими минутами, что предопределяет их высокую эксплуатационную манёвренность. Регулировочный диапазон ГАЭС, из самого принципа её работы, близок двукратной установленной мощности, что является одним из основных её достоинств. ГАЭС целесообразно строить вблизи центров потребления электроэнергии, т.к. сооружение протяжённых линий электропередачи для кратковременного использования экономически не выгодно. Обычный срок сооружения ГАЭС около 3 лет.

 

3. История развития

 

Строительство ГАЭС было начато в Западной Европе в конце XIX в. - в 1882 г. в Швейцарии близ г. Цюриха была сооружена установка Леттем с двумя насосами мощностью по 51,5 кВт, накачивающими воду на высоту 153 м в резервуар емкостью 18 тыс. м3. В 1894 г. на прядильной фабрике в Италии была введена в работу установка Крева-Луино мощностью 50 кВт с напором 64 м, работавшая по недельному циклу аккумулирования: запасенный в субботу и воскресенье объем воды срабатывался в рабочие дни.

К 1900 г. в Германии, Австрии и Италии было построено еще несколько ГАЭС мощностью по 50-100 кВт. В 1912 г. в этих странах насчитывалось 7 ГАЭС с единичной мощностью агрегатов до 3 МВт, установленных по раздельной схеме. Это были преимущественно малые установки, назначением которых было повышение суточной выработки ГЭС, не имевших водохранилищ достаточной емкости.

До 1925 г. внедрение насосного аккумулирования шло сравнительно медленными темпами. Тем не менее в период с 1912 по 1930 г. было построено 32 ГАЭС, часть которых оборудована трехмашинными агрегатами. Первые относительно крупные ГАЭС были сооружены в конце 1920-х гг.: высоконапорная ГАЭС Треморджо мощностью 11 МВт в Италии с максимальным напором 905 м и ГЭС- ГАЭС Вегиталь в Швейцарии с мощностью турбинного режима 67 МВт, сезонным регулированием стока и гидроаккумулированием.

К 1940 г. было введено в эксплуатацию более 40 ГАЭС. Преобладающей схемой основного гидроэнергетического оборудования стали трехмашинные агрегаты горизонтального исполнения с единичной мощностью агрегатов в турбинном режиме до 50 МВт. Первая обратимая гидромашина с поворотно-лопаст

Похожие работы

1 2 3 > >>