Гетероатомные соединения нефти

Атомно-абсорбционная спектроскопия (ААС): исследуется спектр поглощения специально подготовленного образца нефтепродукта, который подвергают высокотемпературному воздействию, например вводят в пламя (пламенная ААС)

Гетероатомные соединения нефти

Дипломная работа

Химия

Другие дипломы по предмету

Химия

Сдать работу со 100% гаранией
ических сернистых соединений - это, в основном, алкилпроизводные тиофана, а также в небольшом количестве алкилпроизводные тиофена и тиациклогексана.

В керосиновых и масляных фракциях нефти содержатся сернистые соединения полициклического строения: производные бензтиофена, бензтиофана, дибенз-тиофена и других гетероциклических сернистых соединений, содержащих 3-5 ароматических и нафтеновых колец.

Присутствие сернистых соединений в нефтепродуктах и в сырье некоторых процессов переработки нефти крайне нежелательно. Активные сернистые соединения (S, H2S, HSR) вызывают коррозию металлов. Сернистые соединения, находящиеся в топливах, при сгорании образуют диоксид серы, вызывающий коррозию двигателей. Даже ничтожные их примеси в сырье для платформинга вызывают отравление платинового катализатора. Удаление серы из нефтяных продуктов проводится с помощью гидроочистки, которая состоит в том, что нефтяной продукт подвергается действию водорода при 300-450°С и 1,7-7 МПа над катализаторами, состоящими из сульфидов и оксидов металлов переменной валентности. При этом сера, входящая в состав сернистых соединений, превращается в сероводород, который удаляется с газами:

 

По способности к гидродесульфированию сернистые соединения можно расположить в следующий ряд:

дисульфиды > тиолы > сульфиды > тиофаны > тиофены

Азотистые соединения нефтей

Содержание азота в нефтях составляет десятые доли процента (обычно до 0,3), но в отдельных случаях может доходить до 1,5%. Азот входит, в основном, в состав смолисто-асфальтеновых веществ нефти. При перегонке эти вещества могут разлагаться с образованием азотистых соединений, которые таким путем попадают в нефтяные фракции. Интересно отметить, что, видимо, этим и объясняется повышение содержания азота в нефтяных фракциях по мере увеличения их температуры кипения. Азотистые соединения нефтей подразделяются на две основные группы: азотистые основания и «нейтральные» (слабоосновные) соединения. Азотистые основания, находящиеся в низших и средних фракциях нефтей, являются, в основном, алкильными или цикло-алкильными производными пиридина и хинолина:

 

Пиридин хинолин

 

В высших фракциях идентифицированы бензохинолины и бензоакридины, молекулы которых содержат несколько конденсированных бензольных или нафтеновых циклов. Например:

3,4-бензохинолин 1,2-бензоакридин

 

Содержание азотистых оснований в нефтях может составлять 20-40% от общего количества азотистых соединений.

Нейтральные (слабоосновные) азотистые соединения, идентифицированные в нефтях, подразделяются на:

а) производные индола и карбазола

 

индол карбазол

 

б) циклические амиды (лактамы) ароматических о-аминокислот

 

 

в) порфирины - соединения, содержащие пиррольные фрагменты. Порфирины имеют структуру, аналогичную структуре гемина (красящее вещество крови) и хлорофилла (формула 1), но их молекулы не содержат комплексно-связанного железа (в случае гемина) и магния (в случае хлорофилла). Вместо этих металлов в структуре порфиринов содержатся комплексно-связанные никель и ванадий (последний в виде ванадила VO2+)

г) полипептидные фрагменты белковых молекул, содержащиеся в асфальтеновых и порфириновых концентратах. В результате кислотного гидролиза этих концентратов в продуктах гидролиза обнаружен ряд аминокислот.

В нефтях обнаружены также гетероциклические соединения, содержавшие кроме азота серу (тиазолы).

Количественное определение серы в нефтяных фракциях

Количественное определение серы в нефтяных фракциях проводят путем сожжения определенной навески вещества. При сгорании продукта сера превращается в диоксид серы, который улавливается с помощью титрованного раствора Na2CO3 (0,05N или О,1N). После сожжения титруют раствор соды с помощью 0,05N или О,1N растворов НС1.

Параллельно ставят холостой опыт сожжения продукта, не содержащего серы. Расчет ведут по формуле:

 

%S= [(V0 - V1)N∙16]/10 P

 

где V0- объем HCI в холостом опыте;V1- объем НС1 для основного опыта; N - нормальность раствора HCI; 16 - грамм-эквивалент серы; Р- навеска, г.

Для легких фракций хорошие результаты дает анализ путем сожжения в лампе со специальным фитилем. Однако, даже в случае легких фракций, анализ осложняется тем, что происходит неполное сгорание нефтепродукта, фитиль покрывается углистыми отложениями. В настоящее время широко применяется наиболее удачный вариант лампового метода, который называется «пиролитическим ламповым методом». По этому методу навеску анализируемого продукта подвергают сильному нагреву в кварцевой ампуле (рис.2), пары вещества и продуктов разложения поступают в пламя диоксановой горелки, где происходит их полное сгорание. Твердые продукты пиролиза, оставшиеся в ампуле, окисляют кислородом, который вводят в ампулу с помощью капилляра. Продукты полного окисления навески (СО2, Н2О, SO2) под

Рис. 2. Принципиальная схема прибора для пиролитического лампового определения серы действием водоструйного насоса из зоны сгорания током воздуха.

 

Увлекаются в абсорбер с титрованным раствором соды, где происходит их поглощение. В холостом опыте проводят сжигание диоксана в течение того же времени, что и во время основного опыта. В холостом опыте учитывается влияние углекислого газа, образовавшегося, главным образом, при сгорании диоксана, на титр раствора соды.

Одним из эффективных физико-химических методов количественного определения серы является метод рентгено-флюоресцентного анализа. Этот метод основан на зависимости наблюдаемой интенсивности спектра флюоресценции серы (под действием рентгеновских лучей) от содержания серы в анализируемом образце.

Для количественного определения отдельных групп сернистых соединений применяют, наряду с пиролитическим ламповым методом и химическими методами, физико-химические методы анализа.

. Сероводород определяют по разности двух количественных определений серы до и после его удаления из нефтепродукта с помощью хлористого кадмия:

 

H2S+CdCl2→CdS + 2HCl

. Свободная сера может быть определена по разности количественных определений до и после ее удаления из нефтепродукта с помощью металлической ртути:

 

Hg + S → HgS

 

. Содержание меркаптановой серы можно определить по разности двух определений серы до и после удаления меркаптанов плюмбитом натрия:

 

C2H5OHS-H + Na2PbO2 → (R-S)2Pb +2NaOH

 

Другим способом определения меркаптанов является амперметрическое титрование меркаптанов водным раствором AgNO3. Меркаптаны могут быть определены также потенциометрическим титрованием азотнокислым аммиакатом серебра Ag(NH3)2NO3:

 

RS- + Ag + →R-S-Ag

 

. Сульфиды определяют потенциометрическим титрованием навески нефтепродукта раствором КJО3 в 90%-ной уксусной кислоте. При этом происходит окисление сульфидов в сульфоксиды:

 

R-S-R + КJО3 + 2НСl→ 2 R-S-R + КСl + JC1 + Н2О ↓ О

 

Предварительно из нефтепродукта необходимо удалить S и H2S. Меркаптаны можно не удалять, но при этом в результатах определения делают поправку, так как меркаптаны окисляются в дисульфиды. Дисульфиды в этих условиях дальше не окисляются.

. Дисульфиды определяют после всех компонентов активной серы (RSH, S, H2S) и после удаления S и H2S. Вначале проводят восстановление дисульфидов, действуя на навеску активным водородом:

 

 

Затем определяют образовавшиеся меркаптаны и рассчитывают содержание дисульфидной серы: S дисульфид = S2- S1

где S1и S2 - содержание меркаптановой серы до и после восстановления.

. Остаточную серу определяют по разности между обшим содержанием серы в нефтепродукте и суммарным содержанием серы всех остальных групп сернистых соединений. В остаточную серу входит сера малоактивных ароматических сульфидов, тиофенов и тиофанов, а также сульфоксиды и сульфоны.

Для количественного определения азота в нефтепродуктах обычно используют различные модификации метода Кьельдаля. Навеску нефтяной фракции обрабатывают избытком концентрированной серной кислоты, и все азотистые соединения переходят в сернокислотный слой, который кипятят в присутствии катализатора. При этом весь азот связывается в сульфат аммония. Раствор нагревают со щелочью, выделяющийся аммиак поглощается титрованным раствором серной кислоты, избыток которой оттитровывают щелочью. Содержание основного азота определяют методом потенциометрического титрования 0,IN раствором хлорной кислоты (НС1О4) в смешанном растворителе (уксусная кислота - бензол = 1:1).

Азотистые основания извлекают из нефтей или нефтяных фракций с помощью разбавленной хлороводородной или серной кислот в виде водных растворов солей; растворы обрабатывают щелочами, при этом азотистые основания выделяются в свободном виде. Более полное выделение азотистых оснований достигается при использовании крупнопористых катионитов (КУ-23) в присутствии полярных растворителей (уксусный ангидрид, диметилформамид). Нефтяную фракцию с растворителем многократно пропускают через слой катионита. Азотистые основания сорбируются на его поверхности. Десорбцию азотистых оснований с поверхности катионита проводят с помощью спиртового раствора аммиака или едкого натра.

Нейтральные азотистые соединения извлекают хлорным железом, которое образует комплексные соединения с нейтральными азотистыми веществами:

 

 

Выделенные комплексы разлагают щелочами. При этом азотистые соединения выделяются в свободном виде.

Полученные азотистые основания или нейтральные соедине

Похожие работы

< 1 2 3 >