Геохимия свинца

Свинец (англ. Lead, франц. Plomb, нем. Blei) известен с III - II тысячелетия до н.э. в Месопотамии, Египте и других

Геохимия свинца

Информация

Геодезия и Геология

Другие материалы по предмету

Геодезия и Геология

Сдать работу со 100% гаранией
роморфиту известны псевдоморфозы галенита, апатита, халцедона и бурых железняков. Обычно пироморфит находится в ассоциации с галенитом, англезитом, вульфенитом, ванадинитом и каламином. Иногда как эндогенный минерал он встречается в низкотемпературных жилах. Пироморфит известен в кварцевых жилах Баварии и Саксонии, а также в Березовском месторождении на Урале, в ряде мест Забайкалья (Шилкинское и Зерентуйское месторождения), в месторождении Кизил-Эспе в Казахстане и т. д. Хорошие образцы встречены в ряде месторождений Пенсильвании в США (Уитлей, Эктон).

Практическое значение. Вместе с другими свинцовыми минералами пироморфит идет в плавку.

Англезит Pb[S04]

Химический состав: РЬО 73,6% (РЬ 68,3%); SO3 26,4%. Встречается примесь ВаО (до 8,45%). Кристаллическая структура англезита аналогична структуре барита.

Образование и месторождения. Англезит является типичным экзогенным минералом, возникающим за счет взаимодействия поверхностных растворов с первичными свинцовыми рудами, чаще всего с галенитом, по такой реакции:

PbS + 2O2= PbSO4.

Этот минерал присутствует главным образом в верхних горизонтах свинцовых месторождений. Известны очень редкие находки англезита гидротермального происхождения (например, в месторождениях Райбл и Блейберг в Восточных Альпах). Хорошо образованные кристаллы англезита найдены в Березовском месторождении на Среднем Урале, в Восточном Забайкалье и в некоторых районах Алтая.

Практическое значение. При разработке зон окисления свинцовых месторождений англезит вместе с другими рудами свинца идет в плавку.

Буланжерит

Химический состав: РЬ 55,4%, Sb 25,7%, S 18,9%. Иногда содержит Сu. Кристаллическая структура буланжерита не изучена.

Образование и месторождения. Буланжерит встречается как второстепенный минерал в гидротермальных полиметаллических месторождениях вместе с другими сульфосолями свинца, галенитом, антимонитом, блеклыми рудами, сфалеритом, пиритом и другими минералами. Он известен в Восточном Забайкалье (месторождения Алгачинское, Кличкинское и Дарасунское) и на Украине в месторождениях Нагольного кряжа. Кристаллы буланжерита были встречены в месторождении Сала в Швеции.

Разрушение. На поверхности буланжерит неустойчив и переходит в церуссит и окись сурьмы.

Бурнонит PbCuSbS3

Кристаллическая структура бурнонита полностью не расшифрована.

Образование и месторождения. Бурнонит возникает гидротермальным путем и наблюдается в полиметаллических жилах в тесной ассоциации с блеклыми рудами, галенитом, а также с сульфоантимонидами свинца джемсонитом и буланжеритом. Часто он встречается на контакте тетраэдрита и галенита, где, вероятно, является реакционным образованием Бурнонит известен в месторождениях Пршибрам (Чехословакия), в Клаустале (ФРГ) и Андреасберге (ГДР). Большие кристаллы бурнонита найдены в месторождении Нейдорф в Гарце, в руднике Выбора в Боливии. В Парк-Сити (Юта, США) встречены красивые кристаллы бурнонита до 10 см в длину. В СССР этот минерал встречен в ряде месторождений Забайкалья и в Нагольном кряже в Донбассе.

Разрушение. На поверхности бурнонит неустойчив и переходит в разные вторичные минералы меди, свинца и сурьмы.

Практическое значение. Значительные скопления бурнонита имеют промышленный интерес как руда на свинец и медь.

Джемсонит

Химический состав:РЬ 4050%, Fe до 10%, Sb близко 30%, S близко 20%. Как примеси присутствуют Сu, Zn, Ag.

Образование и месторождения. Джемсонит редкий минерал. Он встречается в гидротермальных полиметаллических месторождениях в ассоциации с галенитом, кварцем и различными сульфоанти-монидами. Месторождения с большим содержанием джемсонита встречаются очень редко (Зимапан в Мексике). Он присутствует в ряде полиметаллических и серебряно-свинцовых месторождений Мексики, США и других стран.

5. Генетические типы промышленных месторождений элемента.

1) Скарны.

2) Метосоматические залежи полиметаллических руд в эффузивноосадочных породах.

3) Пластовые месторождения в карбонатных толщах.

4) Пластообразные и линзообразные залежи колчеданных руд в эффузивах.

5) Кварцево-сульфидные жилы преимущественно в гранитоидах.

6.Участие элемента в различных типах миграции.

6.1. Механическая минграция.

Механическая миграция (механогенез) обусловлена работой рек, течений, ветра, ледников, вулканов, тектонических сил и других факторов, детально изучаемых в динамической геологии, геоморфологии, вулканологии, океанологии, тектонике и других науках о Земле. Существует и специфический геохимический аспект вопроса.

Для Свинца главным фактором, вероятно, является сорбция глинами.

6.2. Физико-химическая миграция. Талассофильность.

Физико-химическая миграция обусловлена переносом атомов, ионов и т.д.

Галенит кристаллизуется в кубических решётках с близкими параметрами с галитом. Орбитальные радиусы натрия и свинца близки, но изоморфизма нет, т.к. NaCl химическая связь существенно ионная, а в PbS ковалентная. Свинец амфотерный элемент катиогенный и аниогенный (в том числе образует комплексные анионы). Он участвует как окислитель и восстановитель не играющий существенной роли в ОВР (главным образом из-за низких кларков и малой способностью к концентрации).

Для Рb в сильнощелочных водах возможны комплексные анионы НРbО2-, а в термальных водах тиосульфатные комплексы типа [Pb (S2O3)3]4-, [Pb (S2O3)]°, [Pb (S2O3)2]2-.

Перенос Рb происходит в основном в водных растворах в эндогенных условиях с участием S2 и Сl.

Только в зоне окисления свинцовых месторождений, где в воде повышается концентрация РЬ2+, может образоваться англезит (PbSO4), a PbS может возникнуть почти везде, где имеется ион S2-. Подтверждением этому служат находки галенита и сфалерита в угольных залежах, в которых трудно предположить высокие концентрации Рb2+ и Zn2+ в питающих водах. Отметим в этой связи, что многие черные морские глины обогащены сульфидами металлов, а сульфаты в них отсутствуют. Расчеты показывают, что грунтовые воды, содержащие 1*10-6 г/л иона РО43-, будут осаждать Рb2+ и не будут осаждать Zn2+ при содержании этих ионов 1*10-6 г/л.

Свинец является стабильным продуктом распада главных и естественных радиоактивных элементов в земной коре. Газообразные соединения свинца находятся только в глубоких частях земной коры (гидротерм., метаморф. и магматич. системах).

Имеет среднюю интенсивность концентрации.

Анализ газово-жидких включений, изучение состава гидротермальных минералов, термодинамические расчеты свидетельствуют о большом разнообразии ионов гидротерм. Для свинца РbСl+, PbF+, Pb (OH)+, [Pb (ОН)]3-, PbHS+, [Pb (HS)3]-, [Pb (S203)2]4- и т. д.

Сорбционные барьеры G. Они возникают на контакте вод с сорбентами. Глинами и другими сорбентами поглощаются Са, К, Mg, Р, S, Rb, V, Cs, Zn, Ni, Co, Cu, Pb, U, As, Mo, Hg, Ra и другие элементы. Сорбционные барьеры очень характерны для морских и озерных илов, краевых зон болот, почв и кор выветривания, для контакта глин и песков в водоносных горизонтах. Существуют сорбционные барьеры и в гидротермальных системах, но там они изучены слабее, чем в зоне гипергенеза. За счет сорбции происходит обогащение глин, гидроксидов Мn, гумусовых веществ Сu, Ni, Со, Ва, Zn, Pb, U, Tl и другими металлами.

Гидротермальные системы основной источник свинца.

Интенсивность миграций свинца слабая или средняя.

Талассофильность свинца: 1,9*10-6

6.3. Биогенная миграция. Биофильность.

Перенос элементов с живым веществом.

Свинец элемент среднего биологического захвата.

Типы геохим. барьеров свинца: сульфидный, щелочной, испарительный, сорбционный и термодинамический.

Свинец мигрирует в кислых и щелочных водах окислительной обстановки.

Биофильность 6*10-1

6.4.Техногенная миграция. Технофильность.

Геохимическая деятельность человечества.

При техногенезе накапливаются наиболее технофильные элементы, человечество «перекачивает» на земную поверхность из глубин элементы рудных месторождений. В результате по сравнению с природным культурный ландшафт обогащается Pb, Hg,Cu, Sn, Sb и другими элементами. О. П. Добродеев подчеркнул, что из недр ежегодно извлекается больше химических элементов, чем вовлекается в биологический круговорот: Pb в 35 раз.

По А. Н. Сутурину свинец один из элементов-загрязнителей «страшной троицы», в которую входят также Hg и Cd.

Среди других отраслей наиболее неблагополучными по РЬ являются предприятия цветной металлургии (особенно по производству Pb, Zn, Си, А1 и др.), машиностроения, металлообработки, строительной, печатной, химической, электротехнической промышленности, коммунального хозяйства и т.д. Среди них в пылях предприятий первых шести отраслей промышленности коэффициенты концентрации Рb наиболее велики и составляют n*100, в остальных п n*10.

Технофильность 1*10-4

Заключение.

При содержании Рb в почвах городских игровых площадок для детей на уровне 500 мг/кг можно ожидать психоневрологических изменений у детей .

Эко- и техногеохимия радиогенного 210Рb (и др.), который, как отмечалось, является сильнейшим радиотоксикантом и весьма подвижным аэрозольным воздушным мигрантом, подробно изучена. Наиболее значительно воздействие 210Рb для населения районов Крайнего Севера.

В почвах ПДК свинца составляет 20мг/кг, с учётом фона 6мг/кг (растворимого) и 32 мг\кг (валового).

В зонах влияния высокосвинцовых производств (завод цветных металлов), по И.Л. Борисенко (1993 г.), РЬ в основном накапливается в почвах, так как имеет в них низкую подвижность; баланс РЬ (в значениях В): выброс 39,3, почвы - 48, атмосферные выпадения - 16, листья березы - 8,5, укос -10. При этом ПДК для Pb в почвах (мг/кг): СНГ -37, ФРГ

Похожие работы

< 1 2 3 >