Геометрия физического пространства

Процесс измерения предполагает точку начала отсчета, к которой можно приложить нулевое деление того или иного измерителя. Это же предполагает и

Геометрия физического пространства

Информация

Математика и статистика

Другие материалы по предмету

Математика и статистика

Сдать работу со 100% гаранией

Геометрия физического пространства

Станислав Кравченко

1. Аксиомы

1.1. Физическое пространство Вселенной вещественно.

1.2. Физическое пространство Вселенной не имеет выделенных подпространств.

1.3. Физические и геометрические свойства пространства Вселенной однозначно взаимообусловлены.

2. Основная теорема физического пространства

Физическое пространство Вселенной есть комплексное пространство вида:

2.1. Идея доказательства:

2.1.1. Физическое пространство Вселенной есть пространство гладких кривых следствие аксиомы 1.2.

2.1.2. Из всех пространств гладких кривых физическому пространству Вселенной соответствуют пространства кривых четного порядка, описываемых уравнениями с действительными корнями следствие аксиомы 1.1.

2.1.3. Число характеристических уравнений пространства кривых четного порядка с действительными решениями и отсутствием выделенных (особых) подпространств (в первом приближении кривыми второго порядка) конечно:

2.1.3.1. (X1)2 (X2)2 = 0.

2.1.3.2. (X1)2 (X2)2 + (X3)2 = 0.

2.1.3.3. (X1)2 (X2)2 (X3)2 + (X4)2 = 0.

2.1.3.4. (X1)2 (X2)2 + (X3)2 + (X4)2 = 0.

2.1.3.5. (X1)2 (X2)2 (X3)2 + (X4)2 + (X5)2 = 0.

2.1.3.6. (X1)2 (X2)2 + (X3)2 + (X4)2 + (X5)2 = 0.

2.1.3.7. (X1)2 (X2)2 (X3)2 + (X4)2 + (X5)2 + (X6)2 = 0.

2.1.4. Умножение уравнений 2.1.3.1...2.1.3.7 на (1) даст систему характеристических уравнений сопряженного подпространства.

3. Следствия

3.1. Физическое пространство Вселенной есть двойственно сопряженные овальные гиперповерхности четного порядка 6-мерного проективного пространства над полем комплексных чисел.

3.2. Физические подпространства (сечения, поля, частицы) с размерностью менее 6 есть k-кратные цилиндры над овальной (6k)-мерной гиперповерхностью.

3.3. Сингулярный базис физического пространства:

3.3.1. Сингулярный базис сопряженного физического пространства:

3.4. Группы вращения физического пространства SU(p, q).

3.5. Мировые линии физических тел кривые четного порядка с действительными решениями.

4. Подпространства

4.1. Физическое пространство Вселенной имеет 4 (четыре) Эйлеровых угла вращения (заряда)

Действительно, уравнение наибольшей разрядности 2.1.3.7 приводится с использованием уравнений тригонометрии к следующему виду:

4.1.1.

sh2α · cos2β · cos2γ sh2α · cos2β · sin2γ

sh2α · sin2β + ch2α · cos2δ + ch2α · sin2δ 1 = 0.

4.1.1*.

ch2α · cos2β · cos2γ ch2α · cos2β · sin2γ

ch2α · sin2β · cos2δ + sh2α ch2α · sin2β · sin2δ + 1 = 0.

4.2. Физическое пространство Вселенной имеет ненаблюдаемые координаты

Суть проблемы заключается не в том, что какие-то координаты пространства свернуты до микроуровня и потому не наблюдаемы. Таких координат можно придумать сколь угодно много

и ни доказать, ни опровергнуть подобные высказывания нельзя, чем они весьма удобны.

Исходить следует из факта локальной кривизны физического пространства Вселенной.

В общем случае кривизну физического пространства предполагают и характеристические уравнения 2.1.3.1...2.1.3.7. Кривизна же пространства подразумевает такую обязательную координату, как радиус кривизны (или центр кривизны). Причем эта координата для данной точки (события) физического пространства-времени есть константа (0 < С < ∞). Именно это обстоятельство нашло свое отражение в уравнениях 4.1.1 и 4.1.1*, где радиус кривизны нормализован до 1. Одновременно ненулевое значение одной из координат при точном соблюдении равенства уравнения требует ненулевого значения, по крайней мере, еще одной координаты.

Процесс измерения предполагает точку начала отсчета, к которой можно приложить нулевое деление того или иного измерителя. Это же предполагает и процесс приема (передачи) информации. Поэтому любому материальному телу, принятому за точку (тело) отсчета мы должны приписать нулевые значения всех координат (0; 0; 0; 0; 0; 0). Если же фактически мы получаем, что какие-то из координат любого материального тела принципиально не могут быть нулевыми (0; 0; 0; 0; С; С), то это и означает, что их точка отсчета лежит вне подпространства материальных тел и для любого тела отсчета эти две координаты измеряемы (наблюдаемы) только косвенно, не непосредственно. Например, любая точка на поверхности Земли, кроме географических координат широты и долготы неявно предполагает такую обязательную координату, как Диаметр Земли, либо координаты ее центра и нигде на поверхности Земли эта координата принципиально не может быть равна нулю (0). Эта третья координата (вместе с уравнением преобразования) и отличает принципиально сферическую поверхность от плоскости, в прочем отличает и любые две сферические поверхности, на пример, Земля и футбольный мяч, хотя в последнем случае различия чисто числовые. Для Земли за точку начала отсчета наиболее удобную точку с наиболее простыми формулами преобразования принят ее центр. Там никто не был, что не означает, что он не существует. Но для любого наблюдателя на поверхности Земли игнорирование такой косвенно наблюдаемой координаты, как радиус кривизны Земли, чревато при достаточно масштабных измерениях серьезными ошибками. Конечно, современными космическими средствами мы можем непосредственно наблюдать и измерять диаметр Земли, но для этого необходимо оказаться вне поверхности Земли; а вот оказаться вне действительного пространства Вселенной не помышляют даже фантасты.

Наличие ненаблюдаемых (косвенно наблюдаемых) координат вносит существенные коррективы в восприятие окружающей нас Вселенной. Отличаются действительные и наблюдаемые группы вращения. Отличаются действительные и наблюдаемые скорости движения.

4.3. Виды полей (частиц)

Уравнения 2.1.3.1...2.1.3.7 в зависимости от их сигнатуры делятся на два больших класса:

4.3.1. Фермионы с одной времениподобной координатой:

2.1.3.6. (X1)2 (X2)2 + (X3)2 + (X4)2 + (X5)2 = 0.

2.1.3.4. (X1)2 (X2)2 + (X3)2 + (X4)2 = 0.

2.1.3.2. (X1)2 (X2)2 + (X3)2 = 0.

4.3.2. Бозоны с двумя времениподобными координатами:

2.1.3.3. (X1)2 (X2)2 (X3)2 + (X4)2 = 0.

2.1.3.5. (X1)2 (X2)2 (X3)2 + (X4)2 + (X5)2 = 0.

2.1.3.7. (X1)2 (X2)2 (X3)2 + (X4)2 + (X5)2 + (X6)2 = 0.

Для фермионов характерно, что только для частицы, являющейся телом отсчета точно выполняется (в ее системе отсчета) характеристическое уравнение.

Для всех остальных аналогичных частиц, поскольку, по крайней мере, одна из их пространственных координат отлична от 0, характеристическое уравнение выполняется только при ненулевом угле наклона ее мировой линии по отношению к мировой линии тела отсчета. В силу аксиомы 1.2 все остальные частицы должны обладать тем же свойством и, следовательно, не может быть двух равных углов наклона, что и является перефразированным принципом Ферми.

Для бозонов характеристические уравнения требуют равенства сумм квадратов времениподобных и пространственноподобных координат, т.е. изотропности мировых линий.

Итак, перейдем к рассмотрению фермионов.

4.3.3. Электрон:

2.1.3.6. (X1)2 (X2)2 + (X3)2 + (X4)2 + (X5)2 = 0.

4.3.3.1. x2 y2 z2 + e2 1 = 0.

4.3.3.1*. x2 y2 z2 e2 + 1 = 0 или:

4.3.3.2. sh2α · cos2β · cos2γ sh2α · cos2β · sin2γ sh2α · sin2β + ch2α 1 = 0.

4.3.3.2*. cos2β · cos2γ cos2β · sin2γ sin2β · cos2δ sin2β · sin2δ + 1 = 0.

Уравнение 4.3.3.2 получается из уравнения 4.1.1 при условии δ = πn/2, где n = 0; ±1; ±2;... и т.д. (здесь и далее со всеми возможными комбинация ми), а уравнение 4.3.3.2* из уравнения 4.1.1* при условии α = 0.

Уравнение 2.1.3.6 имеют SU(1, 4)-группу вращения. Это собственная полная группа вращения геометрических объектов данной размерности. Ее следует отличать от групп вращения наблюдаемых физических объектов элементарных частиц, тех же электронов, в наблюдаемом физическом пространстве. Отличие следующее:

Если физический объект электрон, наблюдается, с известной степенью неопределенности, как локальный, точечный объект, то геометрический объект, соответствующий уравнению 2.1.3.6, здесь мы его также называем «электрон», является принципиально протяженным объектом цилиндром, вернее тором. Одну из координат время мы принципиально наблюдаем лишь в движении по ней со скоростью света, причем в одном направлении.

От двух скрытых координат мы можем иметь лишь косвенную информацию.

Чтобы иметь прямую информацию необходимо иметь возможность совместить с точкой наблюдения начало соответствующих координат, что для скрытых координат, как указывалось выше, принципиально невозможно. В результате мы в принципе не можем наблюдать геометрические объекты полностью, во всех координатах. Нам доступны к наблюдению лишь сечения геометрических объектов. Поэтому следует принципиально отличать группы вращения самих геометрических объектов и группы вращения наблюдаемых сечений этих объектов. Кроме того, в силу принципа Ферми, всегда наблюдается вязка двух геометрических объектов, здесь электрона и фотона, что необходимо для точного выполнения уравнения 2.1.3.7, поскольку все физические события происходят именно в пространстве этого уравнения.

Поэтому реальный электрон это сечение связки двух геометрических объектов (2.1.3.6 и 2.1.3.5), наблюдаемый во вполне определенном поле (пространстве) гравитационном, имеющем скрытые координаты, имеет наблюдаемую группу вращения, входящую в группы вращения его геометрических образующих, но не тождественную им.

Чтобы приблизиться к описанию группы вращения геометрического объекта, на званного здесь электроном, необходимо к группе вр

Похожие работы

1 2 3 4 > >>