Геометрические построения на местности с помощью циркуля и короткой градуированной веревки

Геометрия зародилась в глубокой древности, она изучает форму и взаимное расположение фигур в пространстве, которое нас окружает. В Древней Греции

Геометрические построения на местности с помощью циркуля и короткой градуированной веревки

Доклад

Математика и статистика

Другие доклады по предмету

Математика и статистика

Сдать работу со 100% гаранией

XXXXI региональная научно-практическая конференция школьников и учащейся молодежи

 

 

 

 

 

 

Исследовательская работа по теме:

“Геометрические построения на местности с помощью циркуля и короткой градуированной веревки”

 

Секция: «математика»

 

 

Работа ученицы 8 класса

МОУ “Сорочинская СОШ”

Калачинского муниципального района Омской области

Искаревой Евгении

Руководитель:

Космачева Ольга Михайловна

учитель математики II категории

 

 

 

 

 

 

 

Калачинск, 2009 год

Оглавление

 

Введение

Задачи без использования градуированной веревки

Задача 1. Проложить прямую

Задача 2. Продолжить прямую

Задача 3. Найти точку пересечения двух прямых

Задача 4. Построение перпендикуляра к прямой

Задачи с использованием короткой градуированной веревки

Задача 5. Симметрия относительно точки (построение отрезка равного данному)

Задача 6. Построение прямой параллельной данной

Задача 7. Нахождение середины отрезка

Задача 8. Построение биссектрисы угла

Задача 9. Деление отрезка в данном отношении

Задача 10. Построения под заданным углом

Задача 11.Построение треугольника по двум сторонам и высоте к третьей стороне

Заключение

Литература

 

Введение

 

В школе мы довольно подробно изучаем геометрические построения с помощью циркуля и линейки, решая много различных задач.

Геометрические построения это решение некоторых геометрических задач при помощи вспомогательных инструментов. А как решить такие же задачи на местности?

Ведь невозможно вообразить себе такой огромный циркуль, который мог бы очертить окружность школьного стадиона или линейку для разметки дорожек парка.

На практике картографам для составления карт, геодезистам для того, чтобы размечать участки на местности, например, для закладки фундамента дома, приходится использовать специальные методы.

Цель нашего исследования изучить некоторые методы решения геометрических задач на местности, используя только циркуль (неотградуированное измерительное устройство веревку) и короткую градуированную веревку, а также применить знания по геометрии к решению практических задач на местности.

Задачи:

рассмотреть актуальные задачи, связанные с геометрическими построениями на местности провешиванием прямых, делением отрезков и углов, построение параллельных и перпендикулярных прямых и т.д.;

углубить имеющиеся знания по геометрии.

Гипотеза: мы предполагаем, что сможем решить некоторые геометрические задачи на построение, используя не классический набор инструментов (циркуль и линейку), а набор из циркуля и короткой градуированной веревки.

Задачи о построении на местности

Геометрия зародилась в глубокой древности, она изучает форму и взаимное расположение фигур в пространстве, которое нас окружает. В Древней Греции слова математика и геометрия были синонимами. Любые математические задачи, будь то доказательство свойств чисел или нахождение корней уравнений, решались геометрическими способами. Естественно, в такой ситуации важную роль приобрели задачи на построение. К построениям предъявлялись высокие требования точности, простоты, экономности. Самой совершенной линией на плоскости является окружность, а самой простой прямая (ведь русское слово «простая» и означает «прямая», и «простить» значит «разрешить стоять прямо, не склонив головы»). Наиболее ценными считались построения, использующие только эти две линии. Поскольку прямую можно провести при помощи линейки (без делений), а окружность построить циркулем, то речь идет о задачах на построение с помощью циркуля и линейки. Циркуль позволяет не только построить окружность с указанным центром и радиусом, но отложить отрезок, равный данному, и выяснить, какой из имеющихся отрезков длиннее. С помощью линейки можно провести прямую через две данные точки. (Линейка с делениями, которой мы пользуемся, не годится для измерений длин отрезков, она дает приближенный результат этого античные математики не могли допустить.)

Геометрические задачи на построение, возможно, самые древние математические задачи. Кому-то они сейчас могут показаться не очень интересными и нужными, даже надуманными. И в самом деле, где и зачем может понадобиться умение с помощью циркуля и линейки построить правильный семнадцатиугольник или треугольник по трем высотам, или даже просто построить прямую, параллельную данной? Современные технические устройства выполнят эти построения быстрее и точнее, чем любой человек, а также сделать и точные построения, которые невозможны, если использовать только циркуль и линейку.

И все же без задач на построение геометрия перестанет быть геометрией. Нельзя по-настоящему почувствовать геометрию, подружиться с ней, если " пройти мимо " этих кажущихся сейчас немного странными задач на построение.

В геометрии, как правило, точными считаются построения, выполненные с помощью циркуля и линейки. Эта традиция восходит к глубокой древности. Знаменитая геометрия Евклида (Евклид - древнегреческий ученый, 3-й век до н. э.) была основана на геометрических построениях, выполненных циркулем линейкой (без делений). Такой линейкой можно лишь проводить прямые линии (произвольные, через точку, через две точки). Нельзя откладывать отрезки данной длины, пользоваться обоими краями линейки. Циркулем можно строить окружности, сравнивать или откладывать данные отрезки на прямой.

Знание геометрии и умение применять эти знания на практике полезно в любой профессии. Традиционно построения на местности производят геодезисты для съемки плана земельного участка и строители для закладки фундаментов. Однако такие знания бывают довольно часто нужны и в других областях деятельности.

Можно подумать, что работа на местности ничем существенно не отличается от работы циркулем и линейкой на обыкновенной бумаге. Но это не так. На местности расстояния между точками довольно велики и нет таких линеек и циркулей, которые могли бы помочь нам. Да и вообще чертить на земле какие-либо линии затруднительно. Таким образом, построения на местности, основываясь на геометрических законах, имеют свою специфику:

- во-первых, все прямые не проводятся на земле, а прокладываются, т. е. отмечается на них, например, колышками, достаточно густая сеть точек. Обычно прокладку прямых на местности называют провешиванием прямых.

- Во-вторых, циркуля у нас фактически нет. Все, что остается от циркуля - это возможность откладывать окружности, используя только два колышка и натянутую нить между ними. Сами расстояния будут измеряться только короткой градуированной веревкой, что тоже усложняет задачу.

Как правило, участки местности представляют собой не идеально ровную поверхность, как тетрадный лист, на земле есть возвышения и углубления. Чтобы они не искажали геометрические образы прокладываемых линий, на местности строят не наклонные отрезки, а их проекции на горизонтальную плоскость горизонтальные проложения. Их можно определить, зная угол наклон угол, образованный линией местности и ее проекцией на горизонтальную плоскость. Эти углы измеряются специальными приборами эклиметрами.

Поскольку мы не ставим задачу изучения основ геодезии, то и не будем пользоваться никакими приборами - ни рулеткой, ни астролябией, ни экером, ни теодолитом. Работать так, конечно, трудно, но всё же, попытаемся решить предложенные ниже задачи только с помощью колышек, (неотградуированного измерительного устройства) веревки и короткой градуированной веревки. Рассмотрим отдельно задачи, которые можно решить с помощью лишь циркуля (неотградуированного измерительного устройства веревки) и задачи решаемые с помощью циркуля и короткой градуирован ной веревки. Очевидно, что в обоих случаях вспомогательные инструменты у нас разные, следовательно и решаемые задачи с имеющимся набором вспомогательных инструментов будут отличаться.

Задачи без использования градуированной веревки

 

Задача 1. Проложить прямую

 

На местности колышками обозначены две удалённые друг от друга точки А и В. Как проложить через них прямую и, в частности, как можно устанавливать колышки на прямой между данными точками?

Решение: при решении данной задачи я буду пользоваться следующей аксиомой геометрии «Через любые две точки проходит прямая, и притом только одна». В этой задаче в качестве точек А и В выступают два колышка, через которые нужно провести прямую. (Задача имеет решение при условии, что длина данной веревки больше половины отрезка АВ).

Один конец нашей неотградуированной веревки привяжем к колышку обозначающего точку А, к другому концу привяжем колышек. Из точки А проводим полуокружность в направлении точки В. Аналогично, из точки В проведем полуокружность в направлении точки А. Так как веревка используется определенной длины, то данные полуокружности будет одного радиуса. При пересечении этих полуокружностей получатся две точки С и Д (обозначим их колышками).

 

 

Повторяя все выше сказанное с точками С и Д мы получаем две точки М и N лежащие на прямой АВ.

 

Таким образом можно построить множество точек между точками А и В.

 

 

Задача 2. Продолжить прямую

 

<

Похожие работы

1 2 3 > >>