Геологическая эффективность структурно-формационной интерпретации и её контроль на примере "рифового направления" ГРР

Публикуемые примеры успешного решения геологических задач стали многочисленными, но не массовыми и лишь подчёркивают парадокс невысокого роста геологической эффективности результатов

Геологическая эффективность структурно-формационной интерпретации и её контроль на примере рифового направления ГРР

Статья

Геодезия и Геология

Другие статьи по предмету

Геодезия и Геология

Сдать работу со 100% гаранией

 

 

 

 

 

 

 

 

 

 

 

 

 

Геологическая эффективность структурно-формационной интерпретации и её контроль на примере «рифового направления» ГРР

 

 

 

А. В. Феоктистов, В. А. Феоктистов

Успехи современных технологий поисков и разведки нефти и газа целиком базируются на достижениях технического прогресса в области создания приборов и систем разведочной геофизики. Революционный переход на цифровую регистрацию и системы многократных перекрытий в сейсморазведке обеспечил возможность использования анализа формы сейсмического сигнала для прогноза вещественных характеристик среды. Новые датчики с регистрацией полного вектора сейсмического волнового поля сегодня позволяют проводить производственные 2Д/3Д/4Д-съёмки на суше, в море и в переходных зонах с качественно новым уровнем интеграции сейсмической информации на всех типах волн для решения задач прогноза геологического разреза (ПГР) и прямого поиска углеводородов (ПП). Компьютерная революция вкупе с впечатляющими достижениями средств и способов визуализации сейсмических данных позволили реализовать миграционные преобразования в глубинной области в производственном режиме, выполнять атрибутный анализ исходных сейсмограмм и итерационный процесс построения сложных моделей среды. Настольные многоэкранные рабочие станции сделали интерактивный и итерационный процесс построения глубинной модели легко управляемым в трёхмерном пространстве и в реальном времени. При этом возможно увязывать материалы бурения и сейсморазведки разных лет и модификаций между собой и с материалами ГИС, проводить расчёт и анализ множества атрибутов, выявлять многомерные связи с оценкой точности и достоверности малым числом специалистов-интерпретаторов при совмещении достоинств высокого разрешения по вертикали (ГИС) с высоким разрешением по горизонтали (сейсморазведка). Сочетание компьютерной техники с технологиями ИНТЕРНЕТа позволяет специалистам различных специальностей собираться вместе в надёжной виртуальной среде и обмениваться информацией в масштабе реального времени, не выходя из дома и используя общую базу данных. Принятие важных решений по разработке пласта и бурению скважин оптимизируется при объединении всей необходимой информации в «единой среде визуальной интерпретации», для чего все крупные нефтяные компании создают специальные «центры визуализации». Приборная оснастка скважин и системы разведочной геофизики уже сегодня позволяют перейти от сейсмической интерпретации к моделированию и оценке месторождений [1-6].

Публикуемые примеры успешного решения геологических задач стали многочисленными, но не массовыми и лишь подчёркивают парадокс невысокого роста геологической эффективности результатов применения сложных геофизических технологий по сравнению с ростом научного прогресса в техническом оснащении нефтяных, геофизических компаний и ростом затрат на ГРР. Чтобы понять причины парадокса достаточно сделать простое сравнение известных ошибок и достижений недалёкого прошлого и настоящего времени. Геологическая эффективность поискового и разведочного бурения, пути повышения эффективности ГРР с позиций подтверждаемости геофизических (сейсмических) моделей и количественные оценки характерных ошибок в СССР рассматривались уполномоченными министерствами и ведомствами ежегодно и по итогам пятилеток с их обобщением по всем нефтегазодобывающим регионам и по разным ведомствам [7, 8]. Интересно, что междуведомственная разобщённость и в тот период приводила «к хаосу при определении статистических данных» [7-Гогоненков Г.Н., Эскин В.М.]. Например, подтверждаемость подготовленных сейсморазведкой объектов в Волго-Уральской провинции по данным геофизических трестов составляла 80-90%, а по результатам оценки геологов ВО ИГиРГИ - 50%. В современной России таких периодически обновляемых обобщений невозможно делать из-за разделения общероссийского геологического пространства на лоскуты лицензионных участков с конфиденциальной информацией по геологии и геофизике в каждом из них. «Лоскутная геология» приводит к созданию недостоверных моделей, тиражированию ошибок при невозможности их типизации и учёта на новых участках. Хаос статистических данных лишь усугубился. Все нефтесервисные компании по Саратовскому региону показывают подтверждаемость подготовленных под поисковое бурение объектов от 70 до 100%, в то время как оценки геологов НВНИИГГ дают цифры гораздо ниже: подтверждаемость структурных объектов опустились до 30%, «средний коэффициент подтверждаемости перспективных ресурсов категории С3 за период 1995-2005 г.г. составил 0,22, средний коэффициент достоверности-0,06» [9]. Конкуренция мелких субъектов не приводит к успеху в геологоразведке, что ярко проявляется на примере Саратовского региона, где число недропользователей, занимающихся поисками месторождений нефти и газа, растёт, а геологическая эффективность, достоверность подготовленных под бурение объектов, прирост и подтверждаемость запасов падают [9, 10]. Судя по данным из работы [11] ЦГЭ 2010 года «успешность поисков залежей нефти и газа как была в пределах 10….30% в «низкотехнологичном» прошлом СССР и «высокотехнологичном» сегодня США, так и держится в этих пределах….и будет держаться завтра и послезавтра, и до тех пор, пока нефтяники от поиска структур (даже самыми технически продвинутыми методами) не перейдут к поискам нефтегазосодержащих ловушек, т.е. залежей нефти и газа». Такой переход по мнению Тимурзиева А. И. возможен на основе деидеологизации нефтегазовой геологии от устаревших догм губкинской руководящей гипотезы осадочно-миграционного происхождения нефти (ОМП) при реализации поисковой парадигмы на основе глубинно-фильтрационной модели нефтегазообразования и нефтегазонакопления.

На российском рынке нефтесервиса обострилась неконструктивная конкуренция геологии, геофизики, геохимии, бурения в то время когда ведущие мировые компании отдают приоритет широкой интеграции геодисциплин поиска, разведки и разработки нефтегазовых резервуаров, объединяемых в западной литературе аббревиатурой «Exploration and Production». Успех применения современных технологий определяется интеграцией всех знаний о месторождении, системным подходом и конструктивным сотрудничеством геодисциплин [1-3, 26, 27]. Конструктивное сотрудничество геодисциплин наглядно проявляется в экономике нефтяных западных компаний. Нефтяная компания «Экссон» стала самой прибыльной за счёт слияния геологии и сейсморазведки в новую геонауку СЕЙСМОСТРАТИГРАФИЮ, получившую всемирное признание. Двухтомник «Сейсмическая стратиграфия» [12] был издан в 1982 году в СССР на русском языке и нашёл живейший отклик отечественных геоучёных [13-19]. Эта публикация ускорила оформление российской школы структурно-формационной интерпретации (СФИ) [20, 21, 29].

Напомним, что сейсмическая стратиграфия (СС) была создана американскими геологами, постоянно использующими сейсмические временные и глубинные разрезы в качестве обязательных атрибутов интерпретации как природные обнажения геологического разреза. По мнению И.А. Мушина, «этот, несомненно, плодотворный взгляд на сейсмические разрезы позволил сразу же включить в процесс их интерпретации геологический интеллект, т. е. весь огромный арсенал геологических представлений, закономерностей, накопленных десятилетиями эвристических связей. Рассуждение геолога здесь выглядит вполне разумным и логически обоснованным: коль скоро мы имеем дело с одним геологическим разрезом - то и в соответствие ему должен быть поставлен один конкретный сейсмический разрез!» [20]. Для достижения этой цели разрабатываются средства и методы получения такого конечного сейсмического разреза, который легко читался бы, как геологический разрез в глубинном изображении. Основным таким средством сейчас считается глубинная миграция до суммирования (PSDM- Pre-Stack Depth Migration) [23-25].

Структурно-формационная интерпретация (СФИ) изначально появилась как ответ геофизиков-сейсмиков на сейсмостратиграфический вариант геологической интерпретации, как его альтернатива. Его авторы И.А. Мушин, Л.Ю. Бродов, Е.А. Козлов, Ф.И. Хатьянов [21] исходили из известного всем сейсморазведчикам факта, что вид окончательного сейсмического разреза сильно зависит от критерия, по которому он строился. «Можно, например, стремиться к максимальной прослеживаемости горизонтов - важнейшей задачи для структурных построений - и в результате применения множества целенаправленных процедур фильтрации, регулировки, коррекции и т. п. получить один из возможных разрезов. Можно сконцентрироваться на контрастном выделении дизъюнктивных нарушений - получится другой разрез. Может быть, наконец, получен разрез, на котором наилучшим образом проявляется внутренняя структура искомого геологического объекта - и это будет третий разрез, отличный от предыдущих. Таким образом, каждому геологическому разрезу может быть поставлено в соответствие множество сейсмических отображений, специальным образом подчеркивающих те или иные свойства разреза: его иерархическую структуру; морфологию его основных границ; внутреннее строение слагающих его тел; ранговую совокупность дизъюнктивных нарушений; степень регулярности прослеживания слоистости; типы слоистости, цикличности и т. д.». При этом сам разрез получается на основе информации о среде, записанной на сейсмограммах в виде годографов и полей времён. Извлечение этой информации о среде из полей времён и называется геофизической интерпретацией.

Эти два разных подхода к применению сейсморазведки были детально рассмотрены академиком Гольдиным С. В. в 1989 г. [22]: «Яркая черта современного этапа сейсморазведки - формирование двух весьма различных и дополняющих друг друга направлений, которые

Похожие работы

1 2 3 4 5 > >>