Hазработка системы регулирования, контроля и регистрации потребления энергоносителей печью скоростного нагрева

Следовательно, проектируемая система должна быть, по возможности избавлена от этих недостатков или, по крайней мере, сводить их к минимуму. Основными

Hазработка системы регулирования, контроля и регистрации потребления энергоносителей печью скоростного нагрева

Информация

Компьютеры, программирование

Другие материалы по предмету

Компьютеры, программирование

Сдать работу со 100% гаранией
и стали (прокаливаемостью) и спрейерной установки (максимальной интенсивностью охлаждения).

Рост глубины прогрева свыше этого оптимального значения приводит к накоплению излишнего тепла в валке, что начинает снижать скорость охлаждения на границе закаленного слоя, повышает температуру на оси валка и приводит к росту остаточных напряжений. Вкратце этот принцип следует охарактеризовать так: не следует прогревать валок больше необходимого.

В качестве иллюстрации на рисунке 1.3 для валка диаметром 1200 мм показаны зависимости глубины аустенизированного слоя LА и закаленного слоя LЗ (закаленным слоем условно принят слой с твердостью выше 45HS, что соответствует наличию в структуре не менее 50% бейнитно-мартенситной смеси) от продолжительности нагрева при температуре поверхности ТН=950С (сталь 75ХМФ) и ТН=920С (сталь 90ХФ). Нагрев до температуры ТН проводился со скоростью 300С/ч по металлу, охлаждение с максимально возможной для данной спрейерной установки, которая допускает проводить охлаждение с максимальной плотностью орошения от 1.14 кг/м2с (валок диаметром 2000 мм) до 1.9 кг/м2с (валок диаметром 1200 мм).

 

 

Рисунок 1.3 Зависимость глубины аустенизированного слоя LЗ (а) и температуры центра ТЦ (б) от продолжительности прогрева при градиентном нагреве валка диаметром 1200 мм.

 

Из рисунка 1.3 видно, что увеличение продолжительности прогрева свыше 1 ч практически не увеличивает глубину закаленного слоя для валка из стали 75ХМФ и 90ХФ. При этом прогрев свыше 1.5 ч даже снижает глубину закаленного слоя в валке из стали 90ХФ. Дополнительным аргументом в пользу ограничения продолжительности нагрева служит тот факт, что при выдержке температура центра растет довольно интенсивно, что будет сопровождаться увеличением остаточных напряжений.

При выборе оптимальной продолжительности прогрева следует учитывать, что с ростом выдержки при температуре аустенизации увеличиваются остаточные напряжения в валке после закалки, поэтому этот параметр надо выбирать с учетом ограничений на уровень остаточных напряжений.

В свою очередь, уровень остаточных напряжений можно определить, только выбрав режим охлаждения, который зависит от режима нагрева. Таким образом, параметры нагрева и охлаждения оказываются взаимозависимыми. Это означает необходимость многовариантных (многопараметрических) расчетов на стадии проектирования режима для определения оптимальных значений параметров ДТО.

 

  1. Назначение, структура и состав АСУ ПСН

 

1.2.1 Назначение

 

ПСН предназначена для скоростного нагрева бочки валка (предварительно подогретого в печи с выкатным подом до температуры 400-550С) с постоянной скоростью 100-300С/ч (по металлу) до температуры закалки 920-970С и последующей выдержкой в течение 45-60 мин. В результате нагрева в ПСН в валке формируется градиентное распределение температуры с прогревом поверхностного слоя на заданную глубину.

Спрейер предназначен для регулируемого охлаждения бочки валка, при этом на первом этапе используется интенсивное водяное охлаждение с максимальным расходом воды в течение 30-60 мин. На втором этапе применяется мягкое водо-воздушное охлаждение с регулируемым расходом воды в течение 75-145 мин.

Оборудование системы управления (СУ) ПСН предназначено для управления тепловым режимом печи скоростного нагрева в ручном и автоматизированном режиме.

Оборудование СУ спрейера предназначено для управления режимом охлаждения на спрейерной установке в ручном и автоматизированном режиме.

Оборудование системы управления предназначено для работы в следующих условиях:

  1. номинальное значение климатических факторов внешней среды по ГОСТ 15150-69, ГОСТ 15543-70 для климатического исполнения У;
  2. температура окружающей среды от +5С до +50С, окружающая среда не взрывоопасная, с содержанием коррозионно-активных агентов в атмосфере типов I и II по ГОСТ 15150-69, верхняя концентрация инертной пыли (в т.ч. токопроводящей) в воздухе не более 10 мг/м;
  3. питание осуществляется от трехфазной сети переменного тока;
  4. колебания напряжения питания относительно номинального в пределах 0,85 1,1;
  5. по способу обслуживания шкафов и пультов с размещенными в них техническими средствами АСУ выполнены одностороннего обслуживания с доступом спереди;
  6. для защиты персонала от поражения электрическим током при прикосновении к электрооборудованию и для уменьшения помех в цепях управления применена система шин для заземления и выравнивания потенциала PE, заземление экранов кабелей и проводов.

 

1.2.2 Структура и состав АСУ

 

Работа автоматизированных систем управления СУ ПСН и СУ спрейера основана на принципах управления технологическими процессами с использованием одного микропроцессорного контроллера, осуществляющего одновременное управление обеими установками в реальном масштабе времени. Для связи между отдельными электронными устройствами системы управления (контроллер, децентрализованная периферия, панель оператора и промышленный компьютер) организованы локальные сети управления MPI и Profibus DP (Европейский стандарт EN 50 170).

Архитектура системы управления построена по двухуровневой схеме:

  1. нижний уровень управления;
  2. средний уровень управления.

Нижний уровень управления (НУУ) включает в себя модули микропроцессорного контроллера SIMATIC S7 - 315 DP с цифровыми и аналоговыми входами-выходами и его децентрализованную периферию (удаленные входы-выходы), объединенную сетью PROFIBUS DP. Оборудование НУУ осуществляет сбор информации с пультов, шкафов и датчиков, ее предварительную обработку и передачу на средний уровень управления, а также выдачу управляющих воздействий на исполнительные механизмы установки в зависимости от алгоритма управления.

Средний уровень управления (СУУ) представляет собой промышленный компьютер SIMATIC RI25P, панель оператора ОР7 и микропроцессорный контроллер SIMATIC S7-315DP объединенные сетью MPI. Оборудование СУУ предназначено для ввода параметров технологического процесса, программного управления, контроля, диагностики и протоколирования хода технологического процесса .

В состав системы управления входят:

  1. шкаф контроллера;
  2. шкаф электрооборудования, КИП и А;
  3. шкаф компьютерный;
  4. пульт управления;
  5. датчики технологических параметров и электрооборудование на механизмах ПСН и спрейерной установки.

 

1.2.3 Управление тепловым режимом ПСН с помощью системы управления на базе микропроцессорного контроллера

 

Система управления тепловым режимом ПСН реализована на принципах управления технологическим процессом в режиме реального времени на базе микропроцессорного контроллера и предназначена для решения следующих задач:

  1. подготовки и задания переменных технологического процесса и настройки параметров регулирования;
  2. управления автоматикой безопасности печи;
  3. управления розжигом горелок;
  4. регулирования температуры поверхности бочки прокатного валка или температуры печи;
  5. регулирования соотношения «газ-воздух»;
  6. регулирования давления в рабочем пространстве печи;
  7. визуализации, контроля, диагностики и протоколирования хода технологического процесса.

В состав системы управления функционально входят следующие подсистемы:

  1. подсистема измерения технологических параметров;
  2. подсистема визуализации, контроля, диагностики и протоколирования;
  3. подсистема автоматического регулирования;
  4. подсистема автоматики безопасности.

1.2.4 Подсистема измерения технологических параметров

 

Подсистема измерения технологических параметров предназначена для сбора и обработки информации от аналоговых и дискретных датчиков технологического процесса.

К контролируемым аналоговым параметрам относятся:

  1. температура газовой среды в трех точках рабочего пространства печи (около торцевых стенок и посередине печи);
  2. температура поверхности нагреваемого металла;
  3. температура отходящих газов перед дымовым клапаном;
  4. температура отходящих дымовых газов после воздушного клапана на дымопроводе;
  5. давление в рабочем пространстве печи:
  6. расход газа на печь;
  7. расход воздуха на печь;
  8. положение заслонок газа, воздуха и дымоудаления.

Контроль температуры в рабочем пространстве печи осуществляется с помощью термопар типа ТПР-1788.

Контроль температуры нагреваемого металла производится автоматическим оптическим пирометром ARDOCELL PZ20 фирмы Siemens.

Контроль температуры отходящих газов осуществляется с использованием термопар ТХА-2388.

Давление в печи измеряется измерительным преобразователем «Сапфир-22М-ДИВ»

Расход газа и воздуха измеряется перед регулирующими органами комплектом приборов, состоящих из зондов измерения расхода SDF фирмы SKI и измерительных преобразователей SITRANS P фирмы Siemens, размещенных по месту на трубопроводах газа и воздуха. Применение зондов обусловлено необходимостью минимизации потерь давления по воздушному тракту печи и существенно более широким в сравнении с измерительными диафрагмами диапазоном измерения. Программой контроллера предусматривается демпфирование мгновенных (текущих) измерений значений расхода газа и воздуха для сглаживания пульсации результатов.

Положения заслонок газа, воздуха и дымоудаления, связанных через тяги с исполнительными механизмами контролируется блоками БСПТ-10 встроенными в МЭО.

К контролируемым дискретным параметрам относятся информационные сигналы:

  1. положение и состояние вспомогательных механ

Похожие работы

< 1 2 3 >