Functional Materials Based on Self-Assembly of Polymeric Supramolecules

×òîáû ïðîèëëþñòðèðîâàòü óïðàâëÿåìîå ðàñïîçíàâàíèåì ôîðìèðîâàíèå ìàêðîìîëåêóë â ïîëèìåðàõ, à òàêæå ïîñëåäóþùóþ ñàìîîðãàíèçàöèþ è ïîäãîòîâêó ôóíêöèîíàëüíûõ ìàòåðèàëîâ è íàíî-îáúåêòîâ, ìû ñîñðåäîòî÷èìñÿ

Functional Materials Based on Self-Assembly of Polymeric Supramolecules

Курсовой проект

Иностранные языки

Другие курсовые по предмету

Иностранные языки

Сдать работу со 100% гаранией
lecules. For example, starting from polystyrene-block poly (4-vinylpyndine), in which pentadecylphenol has been hydrogen-bonded, one obtains a structure in which the glassy polystyrene matrix contains empty cylindrical pores with poly (4-vinylpyndine) brushes at the walls. By selecting different block copolymers and amphiphiles, one can tune the wettability of the pore walls. In principle, even the conformations of the brushes can be controlled by selecting the polymer and solvent properly. Saito crosslinked the poly (4-vinylpyridine) "slices," leading to a method of preparing nanoscale colloidal disks.

Structural complexity can lead to a general concept for combining different functionalities within a single material, tuning them separately, and selecting different combinations of them at different processing stages. This leads to new processing options and control of defects of rodlike conjugated polymers, which opens possibilities in molecular electronics. In addition, structural complexity also leads to properties that respond to external stimuli and conditions. Such materials may not necessarily compete with more traditional electronics or structural materials but could offer new possibilities, for example in "smart" structural parts, coatings glues, and paints. Biological materials can also open new routes in materials science, as demonstrated by successful attempts to use the functionalities of DNA and the strong surface activity of specific self-organizing fungal proteins. Materials science is only beginning to use all of these aspects, opening up routes to unforeseen applications.

 

ÒÎ×ÊÀ ÇÐÅÍÈß

Функциональные материалы, основанные на самосборке полимерных макромолекул

 

Ñàìîñáîðêà ïîëèìåðíûõ ìàêðîìîëåêóë - ìîùíûé èíñòðóìåíò äëÿ ñîçäàíèÿ ôóíêöèîíàëüíûõ ìàòåðèàëîâ, êîòîðûå îáúåäèíÿþò íåñêîëüêî ñâîéñòâ è ìîãóò ðåàãèðîâàòü íà âíåøíèå óñëîâèÿ. Ìû èëëþñòðèðóåì ýòó êîíöåïöèþ, èñïîëüçóÿ äèàãðàììó â ôîðìå «ãðåá¸íêè». Ïðèìåðû âêëþ÷àþò â ñåáÿ øåñòèóãîëüíóþ ñàìîîðãàíèçàöèþ ïîëèìåðîâ ñîïðÿæ¸ííûõ ñîñòîÿíèé è ïîëÿðèçîâàííóþ ÿðêîñòü â òâåðäûõ ïëåíêàõ ñòåðæíåâûõ ïîëèìåðîâ, ïîëó÷åííûõ óñòðàíåíèåì áîêîâûõ âîäîðîäíûõ öåïåé îò âûðîâíåííîé òåðìîòðîïíîé ñìåêòè÷åñêîé ôàçû. Èåðàðõè÷åñêè ñòðóêòóðèðîâàííûå ìàòåðèàëû, ïîëó÷åííûå ïðèìåíåíèåì ðàçëè÷íûõ ñàìîîðãàíèçàöèé è ïðèíöèïîâ ðàñïîçíàâàíèÿ, à òàêæå íàïðàâëåííàÿ ñáîðêà ôîðìèðóþò îñíîâó äëÿ ðåãóëèðóåìûõ íàíî-ïîðèñòûõ ìàòåðèàëîâ, òîíêèõ ìåìáðàí, ïðèãîòîâëåíèÿ íàíî-îáúåêòîâ è àíèçîòðîïíûõ ñâîéñòâ, òàêèõ êàê ïðîòîííàÿ óäåëüíàÿ ýëåêòðîïðîâîäíîñòü.

Çà ïîñëåäíåå âðåìÿ áûëî ïðèëîæåíî ìíîãî óñèëèé äëÿ ðàçðàáîòêè íîâûõ êîíöåïöèé ïî ïîäãîòîâêå ñòðóêòóð è îáúåêòîâ, áëèçêèõ ê ìîëåêóëÿðíîìó óðîâíþ. Ìèíèàòþðèçàöèÿ ýëåêòðîíèêè îáåñïå÷èâàåò ñèëüíóþ ìîòèâàöèþ, ïîòîìó ÷òî ñîâðåìåííàÿ ëèòîãðàôèÿ ñòàëêèâàåòñÿ ñ ôóíäàìåíòàëüíûìè ïðîáëåìàìè â äîñòèæåíèè äàëüíåéøåãî ñîêðàùåíèÿ õàðàêòåðíûõ ðàçìåðîâ â ñîîòâåòñòâèè ñ òðåáóåìîé âåëè÷èíîé. Íàïðèìåð, ìîëåêóëÿðíûé óðîâåíü, ïåðåêëþ÷àþùèé ýëåìåíòû, îñíîâàííûé íà ñöåïëåíèè êîëåö è èõ èñïîëüçîâàíèè â ýëåìåíòàõ ïàìÿòè â ýëåêòðîíèêå, áûë èçó÷åí ãðóïïàìè Ñòîääàðòà è Õèòà.

Òàêæå áûëè ïîïûòêè íå òîëüêî ñîçäàòü èíäèâèäóàëüíûå íàíî-ðàçìåðíûå ôóíêöèîíàëüíûå îñîáåííîñòè, íî åù¸ è óïðàâëÿòü îáú¸ìíîé ñòðóêòóðîé âåùåñòâ, äåôåêòàìè, è àíè

Похожие работы

< 1 2 3 4 5 6 > >>