Внеклассная работа по математике

Приемы счета. Укажем ряд эффективных приемов счета, которые можно показать на вечере. «Назовите любое двухзначное число, кратное 9. Я его быстро

Внеклассная работа по математике

Информация

Педагогика

Другие материалы по предмету

Педагогика

Сдать работу со 100% гаранией

Содержание

Ñîäåðæàíèå 1

Âíåêëàññíàÿ ðàáîòà 2

Ñèñòåìà âíåóðî÷íîé ðàáîòû è îðãàíèçàòîð 2

Âíåêëàññíàÿ ðàáîòà ïî ìàòåìàòèêå 3

Ìàòåìàòè÷åñêèå âå÷åðà 4

Ïîäãîòîâêà âå÷åðà 4

Ñîäåðæàíèå âå÷åðà 5

Çàêëþ÷åíèå 10

Ëèòåðàòóðà 11

 

 

Внеклассная работа

Ñèñòåìà âíåóðî÷íîé ðàáîòû è îðãàíèçàòîð

Задачи формирования всесторонне развитой личности школьника, комплексного подхода к постановке всего дела воспитания требуют, чтобы внеурочная воспитательная работа представляла собой стройную целенаправленную систему.

Система внеурочной воспитательной работы представляет собой единство целей, принципов, содержания, форм и методов деятельности.

Содержание системы внеурочной воспитательной работы включает в себя единство умственного, нравственного, трудового, эстетического, физического воспитания учащихся, разнообразные виды деятельности общешкольного, классных и других коллективов.

Система внеклассной и внешкольной воспитательной работы имеет сложную структуру. Ее можно рассматривать как единство и взаимосвязь нескольких элементов: планирования, организации и анализ деятельности. При этом отсутствие любого элемента неизбежно приводит к разрушению всей системы. Вместе с тем ей присущи динамизм, внутреннее движение: изменяются задачи, усложняются содержание, структура, методы. Наконец, системе внеурочной работы свойственно сочетание управления и самоуправления: главными задачами являются развитие и помощь в реализации инициативы и самодеятельности учеников.

Существуют типичные недостатки в массовой практике организаторов по созданию системы внеурочной работы.

Существует недостаток неполнота работы, «провал» любого звена в цепи «цель содержание форма» или «планирование организация анализ», а также отсутствие связей между этими звеньями. Чаще всего это является следствием того, что некоторые педагоги отождествляют содержание и формы работы, а планирование сводят к распределению мероприятий по времени и месту.

Не менее опасен и другой недостаток интенсивное развитие одних направлений работы в ущерб другим. В школах, где, например развито только нравственное просвещение, ученики нередко ленивы в практических делах; если организатор занят только эстетическим воспитанием, оно в конечном счете может выродиться в эстетство, когда внешне, форма преобладает над содержанием и принижает его роль.

Еще один существенный недостаток формализм, слабая идейная и нравственная целенаправленность многих воспитательных мероприятий.

Именно обеспечению целенаправленной взаимосвязи и полноценного развития различных элементов системы внеурочной работы служит и система деятельности самого организатора.

Внеклассная работа по математике

Несмотря на свою необязательность для школьника, внеурочные занятия по математике заслуживают самого пристального внимания каждого учителя, преподающего этот предмет. Введение в школьное образование факультативных курсов по математике не снимает необходимости провидения внеурочных занятий.

Учитель может на внеурочных занятиях в максимальной мере учесть возможности, запросы и интересы своих учеников. Внеклассная работа по математике дополняет обязательную учебную работу по предмету и должна прежде всего способствовать более глубокому усвоению учащимися материала, предусмотренного программой.

Одна из основных причин сравнительной плохой успеваемости по математике слабый интерес многих учащихся к этому предмету. Интерес к предмету зависит прежде всего от качества учебной работы на уроке. В то же время с помощью продуманной системы внеурочных занятий можно значительно повысить интерес школьников к математике.

Наряду с учениками, безразличными к математике, имеются и увлекающиеся этим предметом. Они хотели бы побольше узнать о своем любимом предмете, порешать более трудные задачи.

Внеурочные занятия с успехом могут быть использованы для углубления знаний учащихся в области программного материала, развития их логического мышления, исследовательских навыков, смекалки, привития вкуса к чтению математической литературы, для сообщения учащимся полезных сведений из истории математики.

Внеклассные занятия с учащимися приносят большую пользу и самому учителю. Чтобы успешно проводить внеклассную работу, учителю приходится постоянно расширять свои познания по математике. Это благотворно сказывается и на качестве его уроков.

Математические вечера

Ïîäãîòîâêà âå÷åðà

Наиболее удобно проводить вечера для учащихся параллельных классов.

Подготовка вечера очень кропотливое дело. Поэтому начинающему учителю лучше ориентироваться одного такого вечера в течение года. В процессе подготовки к вечеру нужно предоставить возможности для самодеятельности учеников, для проявления их самостоятельности и инициативы.

Учитывая то, что основная цель вечера повышение интереса к математике, желательно привлечь к его организации как можно больше учащихся. Если ученику будет поручена подготовка какого-то номера программы, то его интерес к вечеру значительно возрастет.

За несколько дней до вечера вывешивается красочное объявление о месте и времени проведения вечера и его программе. Можно пригласить учеников других классов. Желательно, чтобы пригласительные билеты были со вкусом оформлены.

Программа должна быть разнообразной и содержательной. Нужно учитывать тягу детей к яркому, таинственному и загадочному. С другой стороны, недопустимо, чтобы в сознании учащегося то интересное и забавное, занимательное, с чем он знакомится на вечере, противопоставлялось тому, что он изучает на уроках. Например, если показывается на вечере прием быстрого счета, то должно указано, что при выводе этого приема используется такая-то формула школьно курса алгебры и т. п.

Обычно длительность вечера два-три часа.

Зал или класс, где проводится вечер, украшают портретами математиков, а также плакатами математического содержания: высказывания выдающихся людей о математике, шутками, геометрическими иллюзиями, задачами. Большинство плакатов можно украсить рисунками, привлекающими к себе внимание учеников.

Содержание вечера

Часто в программу включают: рассказы, беседы, доклады на математические или историко-математические темы, фокусы, развлечения, задачи.

Обычно вечер начинается с доклада на математическую или историческую тему. Заслуживают предпочтение такие темы, в которых любой присутствующий ученик мог бы разобраться «без бумаги и карандаша», т. е. темы, не связанные со сколько-нибудь значительными выкладками. А большой доклад для вечера целесообразно разбить на несколько частей и распределить между несколькими учениками.

Приемы счета. Укажем ряд эффективных приемов счета, которые можно показать на вечере.

  1. «Назовите любое двухзначное число, кратное 9. Я его быстро умножу на 12345679» (например назовут 54). Ответ: 12345679ž54=666666666. Объяснение: Делим число, названное учеником, на 9, получаем однозначное число и выписывает его 9 раз подряд.
  2. «Возведите в куб любое двухзначное число. И я в уме извлеку из результата кубический корень» (например это 328509). Ответ: 3328509=69. Объяснение: Я помню кубы 9 первых натуральных чисел. Замечаю, что куб каждого из крайних двух из этих девяти чисел (1 и 9) и средних трех (4, 5, 6) оканчивается той же цифрой, какой записывается само число, а куб каждого из остальных четырех чисел дополнением этой цифры до 10. Число 328509 оканчивается цифрой 9. Значит, и его кубический корень оканчивается 9. Кроме того, 63=216 меньше 328, 73=343 больше 328. Значит первая цифра 6.

Математические софизмы. На вечере можно предложить со сцены не громоздкий софизм.

Спичка вдвое длиннее телеграфного столба!. «И я берусь доказать это, и притом каждая спичка длиннее телеграфного столба ровно вдвое.

Пусть а длина спички, б столба. Обозначим ба=с, б=а+с. Перемножим эти равенства почленно. Получим:

б2-аб-са+с2.

Вычтем из обеих частей бс. Получим:

б2-аб-бс=са+с2-бс

б(б-а-с)=с(а+с-б)

б(б-а-с)=-с(б-а-с).

Отсюда б=-с, но с=б-а, так что с=а-б.

Таким образом, б=а-б, а=2б.

На что такое а? Длина спички. А б это длина столба. Итак: спичка вдвое длиннее телеграфного столба.

Этому софизму можно было бы придать другую фабулу, например: «В наперстке вмещается вдвое больше воды, чем в ведре»; «Горошина вдвое тяжелее земного шара» и т.п.

Похожие работы

1 2 >