Випадкові процеси та одновимірні закони розподілу ймовірностей

Подані співвідношення можна узагальнити на випадок більшої кількості випадкових сигналів. У загальному випадку числові характеристики одновимірних розподілів залежать від часу.

Випадкові процеси та одновимірні закони розподілу ймовірностей

Информация

Компьютеры, программирование

Другие материалы по предмету

Компьютеры, программирование

Сдать работу со 100% гаранией

Цей момент характеризує розсіювання можливих значень випадкової величини відносно її середнього значення і називається дисперсією. Стосовно електричних сигналів дисперсія характеризує потужність відхилень випадкової величини від середнього значення, яка виділяється на навантаженні в 1 Ом.

Часто використовують таке позначення дисперсії:

 

. (23)

 

Величину , що дорівнює додатному значенню кореня квадратного з центрального моменту другого порядку, називають середнім квадратичним відхиленням випадкової величини .

Розмірність збігається із розмірністю випадкової величини і тому її можна використовувати для оцінювання ширини кривої густини розподілу ймовірностей: чим більше значення , тим ширшим є графік функції .

На основі ансамблю з реалізацій випадкового процесу статистичне визначення дисперсії проводимо за формулою:

 

(24)

 

Визначимо перший та другий центральні моменти для рівномірного та експоненційного законів (табл.1 та 2).

Рівномірний закон. Оскільки математичне сподівання для цього випадку дорівнює нулеві, то обидва центральні моменти збігаються з початковими моментами, тобто

 

,

 

Експоненційний закон. Перший центральний момент за означенням дорівнює нулеві. Другий центральний момент (дисперсія), згідно з (22), визначаємо за формулою:

 

.

 

При розв'язуванні багатьох практичних завдань доводиться додавати, віднімати та перемножувати випадкові сигнали. При цьому числові характеристики результуючих сигналів достатньо просто визначають через числові характеристики первинних сигналів.

Наприклад, якщо та є первинними незалежними сигналам, постійна величина, то справедливі такі співвідношення:

 

(25)

(26)

(27)

(28)

(29а)

. (29б)

 

Подані співвідношення можна узагальнити на випадок більшої кількості випадкових сигналів. У загальному випадку числові характеристики одновимірних розподілів залежать від часу. Це зумовлюється часовою залежністю функції розподілу та одновимірної густини розподілу . Тому в цьому разі числові характеристики замість чисел стають функціями часу і їх називають моментними функціями. На рис. 5a зображена реалізація випадкового процесу, перша моментна функція якого (середні значення) не змінюється в часі і дорівнює нулеві, а центральна моментна функція другого порядку (дисперсія) з часом зростає. Рисунок 5б ілюструє варіант реалізації випадкового процесу з незмінною дисперсією та змінним у часі середнім значенням.

 

Рисунок 5 Варіанти реалізацій випадкового процесу із змінними в часі числовими характеристиками.

Похожие работы

< 1 2