DIP-монтаж

Следует отметить, что на современном рынке, наряду с выпускавшимся в 90-е г.г. и продающимся сейчас б/у (в т.ч. восстановленным) оборудованием

DIP-монтаж

Дипломная работа

Компьютеры, программирование

Другие дипломы по предмету

Компьютеры, программирование

Сдать работу со 100% гаранией
плоскость, что значительно упростило как процесс разработки конструкций, так и изготовление устройств. Появление печатного монтажа в дальнейшем привело к революции в технологичности и автоматизации проектирования электронных устройств.

Технология монтажа в отверстия, как следует из названия, представляет собой метод монтажа компонентов на печатную плату, при котором выводы компонентов устанавливаются в сквозные отверстия платы и припаиваются к контактным площадкам и/или металлизированной внутренней поверхности отверстия.

Широкое распространение технология монтажа в отверстия получила в 50-х - 60-х годах XX века. С тех пор значительно уменьшились размеры компонентов, увеличилась плотность монтажа и трассировки плат, было разработано не одно поколение оборудования для автоматизации сборки узлов, но основы конструирования и изготовления узлов с применением данной технологии остались неизменны.

В настоящее время технология монтажа в отверстия уступает свои позиции более прогрессивной технологии поверхностного монтажа, в особенности, в массовом и крупносерийном производстве, бытовой электронике, вычислительной технике, телекоммуникациях, портативных устройствах и других областях, где требуется высокая технологичность, миниатюризация изделий и хорошие слабосигнальные характеристики.

Тем не менее, есть области электроники, где технология монтажа в отверстия по сей день является доминирующей. Это, прежде всего, силовые устройства, блоки питания, высоковольтные схемы мониторов и других устройств, а также области, в которых из-за повышенных требований к надежности большую роль играют традиции, доверие проверенному, например, авионика, автоматика АЭС и т.п.

Также данная технология активно применяется в условиях единичного и мелкосерийного многономенклатурного производства, где из-за частой смены выпускаемых моделей автоматизация процессов неактуальна. Эта продукция, в основном, выпускается небольшими отечественными предприятиями как для бытового, так и для специального применения.

Некоторое время назад имела место ситуация, когда выбор технологии монтажа в отверстия мог быть продиктован применяемыми компонентами. Некоторые компоненты попросту не выпускались в корпусах для поверхностного монтажа. Особенно это было актуально для нашей страны, поскольку новинки доходили до нас с опозданием. Сейчас эта ситуация существенно изменилась, и большинство компонентов общего применения можно найти либо в обоих исполнениях, либо в исполнении для поверхностного монтажа, поскольку он считается более прогрессивным. Исключение составляют силовые компоненты, электромеханические реле, разъемы, большие переменные резисторы, панели ИМС и некоторые другие компоненты, однако многие из них уже имеют аналоги для монтажа на поверхность. Существует неоднозначное отношение к надежности электролитических конденсаторов для поверхностного монтажа, а их танталовые аналоги достаточно дороги, поэтому часто на платах среди поверхностного монтажа можно встретить штыревые алюминиевые электролитические конденсаторы. Все это обуславливает необходимость применения технологии смешанного монтажа (одновременного наличия на ПП SMT- и THT-компонентов).

Технология установки THT-компонентов относительно проста, хорошо отработана, допускает ручные и автоматизированные методы сборки, хорошо обеспечена сборочным оборудованием и технологическим оснащением. В данной статье кратко рассмотрены основные операции THT-технологии.

Компоненты

 

ЭК, используемые в технологии монтажа в отверстия, по типу корпуса можно разбить на следующие основные группы (примеры корпусов приведены на рис. 9):

а) ЭК с осевыми (часто встречается обозначение axial, аксиальными) выводами;

б) ЭК с радиальными выводами (radial);

в) SIL, SIP (Single In-Line Package) - многовыводной корпус с однорядным распо ложением выводов;

г) DIP (Dual In-Line Package) - корпус с двухрядным расположением выводов;

д) разъемы, слоты;&

е) панели для ИС, в том числе DIP; ZIF (Zero Insertion Force, панели с нулевым усилием вставки для штырьковых ИС); PGA (Pin Grid Array, панели для штырьковых ИС с матрицей выводов);

ж) различные компоненты сложной формы.

 

Рис. 9 - Примеры THT-компонентов: а) с осевыми выводами; б) с радиальными выводами; в) в корпусах SIL; г) в корпусах DIP; д) разъемы; е) панели для ИС; ж) ЭК сложной формы

Такое разделение компонентов, прежде всего, связано с особенностями технологии их монтажа. Так, например, осевые и радиальные выводы компонентов требуют формовки и обрезки, тогда как большинство других компонентов в этом не нуждаются. При формовке выводов, и как следствие, последующей установке компонентов с осевыми выводами они имеют дополнительную степень свободы (вращение вокруг оси), поэтому их маркируют цветными кольцами (см. рис. 9а), исключающими установку «маркировкой вниз».

Также есть различия в механизмах захвата, базирования и фиксации разных групп компонентов, поэтому часто компоненты в разных корпусах устанавливаются каждый на своем оборудовании.

 

Типичная последовательность операций

 

Технологический процесс сборки ПП на основе THT-технологии состоит из следующих типовых этапов:

подготовка выводов ЭК (формовка, обрезка), часто совмещается с автоматизированным монтажом;

установка компонентов (ручная, автоматическая);

пайка (волной припоя, ручная, селективная);

отмывка (ультразвуковая, струйная).

На некоторых предприятиях сохранилась технология, при которой из-за проблем с покрытиями выводов и хранением компонентов подготовка выводов включала в себя предварительное лужение, однако современная технология этого не предусматривает благодаря качественной упаковке и покрытию выводов современных компонентов. Ниже рассмотрены данные операции в порядке выполнения.

Подготовка выводов ЭК

Выводы ЭК перед монтажом должны быть специальным образом подготовлены. Цель подготовки:

выравнивание (рихтовка) выводов (если требуется);

обеспечение необходимого монтажного расстояния между выводами;

зазора между ПП и компонентом (если требуется);

фиксации ЭК на ПП при ручном монтаже либо до поступления платы в установку пайки.

Зазор обычно обеспечивается приданием выводам ЭК соответствующего изгиба - т.н. «опорного зи́га» (рис. 2а); самофиксация ЭК на ПП перед групповой пайкой - особым изгибом части вывода, входящей в отверстие ПП - замка́ (рис. 2б). Одновременное выполнение зига и замка носит название «зиг-замо́к».

Также возможно крепление ЭК следующими методами:

обеспечением пружинения выводов;

посадкой на клей (клей полимеризуется при комнатной температуре, при этом для стеклянных корпусов может понадобиться надевание трубки на часть корпуса, контактирующую с адгезивом; также необходимо обеспечить достаточное количество клеевых точек для крепления тяжелых ЭК);

подпайкой выводов (применяется при ручном монтаже - например, подпайка двух диагонально расположенных выводов разъема);

подгибкой (полной либо частичной - на угол от 0 до 45° от плоскости ПП и только для выводов диаметром менее 0,7 мм (более - в технически обоснованных случаях); необходимо обеспечить минимально допустимое расстояние от загнутого вывода до соседних КП/выводов/проводников; следует осуществлять подгибку вдоль печатного проводника, если в конструкторской документации нет других указаний);

с использованием различных держателей (хомутов, металлических скоб, клипс, зажимов).

Тяжелые элементы (например, трансформаторы) или элементы, подверженные механическим воздействиям (тумблеры, потенциометры, подстроечные конденсаторы), устанавливаются с помощью особых держателей. Такие держатели обеспечивают надежное механическое крепление соответствующих элементов к ПП и предотвращают обрыв и поломку выводов под воздействием механических нагрузок.

 

Рис. 10 - Обеспечение с помощью формовки выводов ЭК: а) зазора между ПП и компонентом (опорный зиг); (б) самофиксации ЭК на ПП (замо́к)

 

Формовку круглых или ленточных выводов элементов производят с помощью ручного монтажного инструмента либо специальных полуавтоматических устройств таким образом, чтобы исключались механические нагрузки на места крепления выводов к корпусу. При формовке выводов не допускается их механическое повреждение, нарушение защитного покрытия, изгиб в местах соединения вывода и корпуса, скручивание относительно оси корпусов, растрескивание стеклянных изоляторов и пластмассовых корпусов.

Основные ограничения (рис. 11) накладываются на размер от корпуса ЭК до оси изогнутого вывода (L) и внутренний радиус изгиба выводов (R). Минимальный размер L в зависимости от типа ЭК находится в пределах 0,75 - 4 мм (но не менее 2·D выводов); размер R зависит от диаметра вывода и составляет минимум 0,5 - 1,5 мм (но не менее (1-2)·D выводов). Также на выводах не должно быть деформаций и утонений, превышающих 10% от диаметра, ширины либо толщины вывода.

Рис. 11 - Основные параметры формовки

 

Несоблюдение данных рекомендаций может привести к образованию избыточных напряжений в месте крепления вывода к корпусу ЭК и в области изгиба вывода и, как следствие, появлению в этих местах трещин и, возможно, обрывов, в особенности при механических воздействиях на собранный узел. Не допускается изгибать жесткие выводы (лепестки) транзисторов и диодов средней и большой мощности, так как это может привести к растрескиванию их стеклянных изоляторов и нарушению герметичности корпусов.

Расстояние от корпуса до места пайки должно быть не менее 2,5 мм, если не приняты меры к дополнительному теплоотводу в процессе пайки.

Не осуществляют формовку, подгибку и

Похожие работы

< 1 2 3 4 5 > >>