Виды коррозионных разрушений

При местной коррозии на поверхности металла обнаруживаются поражения в виде отдельных пятен, язв, точек (рис. 1.1 г, д, е). В

Виды коррозионных разрушений

Информация

Химия

Другие материалы по предмету

Химия

Сдать работу со 100% гаранией

Классификация коррозионных процессов по виду (геометрическому характеру) коррозионных разрушений на поверхности или в объеме металла

 

По характеру изменения поверхности металла или сплава или по степени изменения их физико-механических свойств в процессе коррозии независимо от свойств среды коррозионные разрушения бывают нескольких видов (рис. 1.1).

 

 

.1 Сплошная коррозия

 

Если коррозия охватывает всю поверхность металла, то такой вид разрушения называется сплошной коррозией. К сплошной коррозии относится разрушение металлов и сплавов под действием кислот, щелочей, атмосферы. Сплошная коррозия может быть равномерной (рис 1.1 а), т. е. разрушение металла происходит с одинаковой скоростью по всей поверхности, и неравномерной (рис 1.1 б), когда скорость коррозии на отдельных участках поверхности неодинакова. Примером равномерной коррозии может служить коррозия при взаимодействии меди с азотной, железа - с соляной, цинка - с серной кислотами, алюминия - с растворами щелочей. В этих случаях продукты коррозии не остаются на поверхности металла. Аналогично корродируют железные трубы на открытом воздухе (атмосферная коррозия). Это легко увидеть, если удалить слой ржавчины; под ним обнаруживается шероховатая поверхность металла, равномерно распределенная по всей трубе. Основным фактором, определяющим механизм и скорость атмосферной коррозии, является степень увлажненности поверхности корродирующих металлов. По механизму протекания процесса атмосферная коррозия подразделяется на электрохимическую (мокрую и влажную атмосферную коррозию) и химическую (сухую).

Механизм сухой атмосферной коррозии металлов аналогичен химическому процессу образования и роста на металлах пленок продуктов коррозии. Процесс сухой атмосферной коррозии металлов сначала протекает быстро, но с большим торможением во времени так, что через некоторое время, порядка нескольких или десятков минут, устанавливается практически постоянная и очень незначительная скорость, что обусловлено невысокими температурами атмосферного воздуха. Так образуются на металлах в кислороде или сухом воздухе тонкие окисные пленки, и поверхность металлов тускнеет. Если в воздухе содержатся другие газы, например сернистые соединения, защитные свойства пленки образующихся продуктов коррозии могут снизиться, а скорость коррозии в связи с этим несколько возрасти. Однако, как правило, сухая атмосферная коррозия не приводит к существенному коррозионному разрушению металлических конструкций. Мокрая атмосферная коррозия металлов по своему механизму приближается к электрохимической коррозии при полном погружении металла в электролит. Видимая пленка влаги на поверхности металла, приводящая к протеканию мокрой атмосферной коррозии, возникает в результате непосредственного попадания электролита на поверхность металла (дождь, обливание конструкции водой или другим электролитом) или физической капельной конденсации влаги, которая происходит при относительной влажности воздуха, близкой к 100%.

1.2 Избирательная коррозия

 

Сплавы некоторых металлов подвержены избирательной коррозии (рис 1.1.в), когда один из элементов или одна из структур сплава разрушается, а остальные практически остаются без изменений. При соприкосновении латуни с серной кислотой происходит компонентно-избирательная коррозия - коррозия цинка, а сплав обогащается медью. Такое разрушение легко заметить, так как происходит покраснение поверхности изделия за счет увеличения концентрации меди в сплаве. При структурно-избирательной коррозии происходит преимущественно разрушение какой-либо одной структуры сплава, так, например, при соприкосновении стали с кислотами феррит разрушается, а карбид железа остается без изменений. Этому виду коррозии особенно подвержены чугуны.

 

.3 Подповерхностная коррозия

 

Подповерхностная коррозия (рис 1.1 ж) начинается с поверхности металла в тех случаях, когда защитное покрытие (пленки, оксиды и т. п.) разрушено на отдельных участках. В этом случае разрушение идет преимущественно под покрытием, и продукты коррозии сосредотачиваются внутри металла. Подповерхностная коррозия часто вызывает вспучивание и расслоение металла. Определить ее возможно только под микроскопом.

 

.4 Местная коррозия (пятнами, язвами, точками)

 

При местной коррозии на поверхности металла обнаруживаются поражения в виде отдельных пятен, язв, точек (рис. 1.1 г, д, е). В зависимости от характера поражений местная коррозия бывает в виде пятен, т. е. поражений, не сильно углубленных в толщу металла; язв - поражений, сильно углубленных в толщу металла; точек, иногда еле заметных глазу, но глубоко проникающих в металл. Точечная (питтинговая) коррозия (рис.1.1 е.) наблюдается у металлов и сплавов в пассивном состоянии, когда коррозии со значительной скоростью подвержены отдельные небольшие участки поверхности, что приводит к образованию глубоких поражений - точечных язв, или питтингов. Коррозионное разрушение этого типа бывает у хромистых и хромоникелевых сталей, алюминия и его сплавов, никеля, циркония, титана в средах, в которых наряду с пассиватором - окислителем присутствуют активирующие анионы, например, в растворах NaCl, в морской воде, в растворах хлорного железа, в смесях соляной и азотной кислот и др. Увеличение содержания хрома и никеля повышает стойкость сталей к точечной коррозии. Питтинг возникает в слабых местах пассивной пленки по достижении определенного потенциала (потенциала питтинго-образования) за счет окислителя или анодной поляризации в присутствии активирующих ионов в растворе, которые вытесняют адсорбированный кислород или, взаимодействуя, разрушают окисную пленку. Местное ослабление пассивности может быть обусловлено неоднородностью структуры металла (интерметаллические и другие включения), случайными механическими повреждениями в защитной пленке и другими причинами. Рост питтинга происходит вследствие интенсивного растворения защитной пленки, что приводит к сильному возрастанию скорости анодного процесса в нем (активационный режим роста питтинга), которое со временем падает в связи с расширением поверхности питтинга и возникающими диффузионными ограничениями (диффузионный режим роста питтинга). Для защиты металлов от точечной коррозии применимы следующие методы:

) выбор стойких против точечной коррозии материалов: высокохромистых сталей, хромоникелевых сталей с молибденом или кремнием (закаленных на аустенит), титана;

) катодная и анодная (в присутствии ингибирующих анионов) электрохимическая защита;

) введение в замкнутые системы ингибиторов точечной коррозии: нитратов, хроматов, сульфатов, щелочей.

 

.5 Щелевая коррозия

 

Щелевой коррозией принято называть усиленное коррозионное разрушение металла конструкций в щелях и зазорах между металлами (в резьбовых и фланцевых соединениях конструкций и др.), а также в местах неплотного контакта металла с прокладочными материалами, а в морских условиях - между обрастающими организмами и обшивкой корабля. Щелевая коррозия наблюдается не только при погружении металла в электролит, но и в атмосферных условиях. Щелевая коррозия может существенно ухудшить работу металлической конструкции. Наибольшей чувствительностью к щелевой коррозии обладают пассивирующиеся металлы (хромистые и хромоникелевые стали, алюминиевые сплавы), что связано с их возможной активацией в щелях.

Объяснение щелевой коррозии как результата работы пары неравномерной аэрации является упрощенным, так как щелевая коррозия наблюдается и в кислых электролитах, и в растворах, не содержащих кислорода.

Для коррозии в узких зазорах - щелях характерны пониженная концентрация в них окислителей (кислорода и других) по сравнению с концентрацией в объеме раствора вне щели и затрудненность отвода продуктов коррозии, в результате накопления которых и их гидролиза возможно изменение рН раствора в щели и кинетики анодного и катодного процессов коррозии металла в щели.

Затрудненность доставки в щель окислителя- катодного деполяризатора (которая в достаточно узких щелях может быть чисто диффузионной), затрудняет протекание катодного процесса, увеличивая его поляризуемость. Уменьшение рН среды за счет гидролиза продуктов коррозии облегчает протекание анодного процесса, уменьшая его поляризуемость (облегчая ионизацию металла и затрудняя образование защитных пленок), что приводит к усиленной работе макропары: металл в щели (анод) - металл открытой поверхности (катод). Щелевая коррозия при атмосферной коррозии металлов обусловлена капиллярной конденсацией влаги в щелях и более долгим удерживанием в них влаги, чем на открытой поверхности. Для защиты металлов от щелевой коррозии применяют следующие методы:

) уплотнение зазоров и щелей полимерными пленками, резиной, смазкой, исключающее попадание электролитов в щель;

) рациональное конструирование, предусматривающее невозможность попадания агрессивной среды в зазоры различных конструктивных сочленений;

) выбор материалов, мало склонных к щелевой коррозии: хромо-никелевых сталей, содержащих молибден (Х18Н12МЗТ), высокохромистых сталей (Х28), титана и его сплавов;

) применение ингибиторов: катодных, анодных и смешанных в повышенных концентрациях и смесей ингибиторов (Na2HPO4 + + КаСга07);

) электрохимическая защита: катодная (для углеродистых сталей и чугуна) и анодная (для хромоникелевых сталей и титана).

 

.6 Межкристаллитная коррозия

 

Межкристаллитная коррозия (рис. 1.1 з) является одним из наиболее опасных видов местной коррозии, приводящей к избирательному разрушению границ зерен, что сопровождается потерей прочности и пластичности сплава (часто без изменения внешнего его вида) и преждевременным разрушением конструкций. Коррозия этого вида н

Похожие работы

1 2 >