Види енергоресурсів, їх використання і запаси

Реальними джерелами одержання електроенергії на гідроелектричних станціях є річки Південно-Західного господарсько-економічного регіону, а саме гірські та передгірські області: Закарпатська (потенційна

Види енергоресурсів, їх використання і запаси

Информация

Физика

Другие материалы по предмету

Физика

Сдать работу со 100% гаранией

План

 

1. Види енергоресурсів, їх використання і запаси. Сучасні способи перетворення різних видів енергії в електричну

1.1 Водна енергія в природі

1.2 Гідроенергетичний потенціал регіону

2. Природа водної енергії. Енергія і потужність водяного потоку. Схеми концентрації напору. Гідроакумулюючі електростанції, припливні електростанції, установки, які використовують енергію води і вітру

2.1 Потужність і енергія водотоку

2.3 Греблевий спосіб створення напору

2.4 Дериваційний спосіб створення напору

2.5 Основні типи будівель ГЕС

2.6 Гідроакумулюючі електростанції

2.7 Припливні електростанції

 

 

1. Види енергоресурсів, їх використання і запаси. Сучасні способи перетворення різних видів енергії в електричну

 

Гідроенергетика це: 1) галузь енергетики; 2) технічна наука про енергію води, методи її отримання і використання з метою електроенергетики. Вона повязана з іншими галузями енергетики і водного господарства (меліорація, водний транспорт, водопостачання та ін).

Гідроенергетика, як наука, включає в себе вивчення методів отримання і використання водної енергії. До методів отримання гідроенергії відносять все, що повязане з вибором схеми використання водного потоку, тобто гідрологічне, гідротехнічне і енерго-економічне обґрунтування споруд і будівель гідроенергетичного вузла.

 

1.1 Водна енергія в природі

 

Енергетичні ресурси це природні джерела енергії, які можна перстворити у ті чи інші види енергії. Первинні джерела енергії поділяються на непоновлювані (вугілля, газ, нафта, уран і т.п.) і поновлювані (енергія річок, вітру, сонця, біоресурси та ін).

Сучасні водні ресурси включають в себе річковий стік, вóди озер і водосховищ, грунтові води, прісні і слабомінералізовані напірні води. Чітких кількісних і якісних критеріїв водні ресурси не мають.

Потенційні запаси енергоресурсів (гідроенергетичний потенціал) океану становлять 350218·1012 кВт·год, а річок, озер і водосховищ - 33·1012 кВт·год.

Гідроенергетичний потенціал за виключенням втрат при освоєнні (на сучасному етапі розвитку техніки втрати становлять Е36 %), називається технічним потенціалом.

Практичне значення для народного господарства має економічний потенціал. Це та частина технічного потенціалу, яку доцільно використовувати при сучасному розвитку енергетики та в недалекому майбутньому. На даний час економічний потенціал світової гідроенергетики становить близько 9800 млрд. кВт·год (США 705, Бразилія 657, Японія 132, Швеція 80 млрд. кВт·год).

 

1.2 Гідроенергетичний потенціал регіону

 

Потенційні гідроенергетичні ресурси України складають близько 42 млрд. кВт·год, економічні 17 млрд. кВт·год. Середньобагаторічний виробіток електроенергії на кінець 80-х років ХХ сторіччя становив близько 10 млрд. кВт·год і використання економічного потенціалу країни становило близько 60 %.

Найбільшими виробниками гідроенергії в Україні є Дніпровський каскад ГЕС (Київська, Канівська, Кременчуцька, Дніпродзержинська ГЕС, Дніпрогес і Каховська ГЕС) загальною установленою потужністю Nуст=3,6 млн. кВт з виробітком енергії Е=9,8 млрд. кВт·год і Дністровська ГЕС Nуст=696 тис. кВт і Е=0,8 млрд. кВт·год.

У Донецько-Придністровському та Південному господарсько-економічних районах гідроресурси використані повністю.

Реальними джерелами одержання електроенергії на гідроелектричних станціях є річки Південно-Західного господарсько-економічного регіону, а саме гірські та передгірські області: Закарпатська (потенційна потужність Nп=1176 тис. кВт, потенційна енергія Еп=10,3 млрд. кВт·год), Івано-Франківська (Nп=574 тис. кВт, Еп=5,0 млрд. кВт·год), Чернівецька (Nп=301 тис. кВт, Еп=2,6 млрд. кВт·год), Львівська (Nп=296 тис. кВт, Еп=2,6 млрд. кВт·год), Київська (Nп=264 тис. кВт, Еп=2,3 млрд. кВт·год), Черкаська (Nп=212 тис. кВт, Еп=1,8 млрд. кВт·год), Чернігівська (Nп=149 тис. кВт, Еп=1,3 млрд. кВт·год) і Тернопільська (Nп=115 тис. кВт, Еп=1,0 млрд. кВт·год).

Потенційні гідроресурси малих річок України складають Nп=330 тис. кВт, Еп=2,9 млрд. кВт·год і розподіляються наступним чином:

Донецько-Придніпровський район - Nп110 тис.кВт, Еп0,9 млрд.кВт·год;

Південно-Західний район - Nп100 тис. кВт, Еп1,0 млрд. кВт·год;

Південний район - Nп120 тис. кВт, Еп1,0 млрд. кВт·год.

 

2. Природа водної енергії. Енергія і потужність водяного потоку. Схеми концентрації напору. Гідроакумулюючі електростанції, припливні електростанції, установки, які використовують енергію води і вітру

 

2.1 Потужність і енергія водотоку

 

Вода, що тече у річці чи каналі, постійно виконує роботу на подолання внутрішнього опору руху води, опору на тертя у руслі і різні ерозійні впливи (розмив берегів і дна, переміщення наносів і т.п.)

 

Визначаємо силу тяги води:

 

F=m·g·sin ,

 

де m маса води між створами А і В.

Виконана потоком робота рівна:

 

A=F·L=m·g·sin·L=··L·g·sin ·L,

 

де - площа поперечного перерізу потоку, м2, - густина води, м3/с.

Замінимо значення довжини ділянки L на добуток vt, де v швидкість потоку, м/с, t час, за який потік проходить від створу А до створу В, с.

Отримуємо залежність A=·g··v·t·sin ·L. Підставляючи у рівняння значення витрати Q=v· та напору (падіння річки між створами) Н= sin ·L, отримуємо остаточне значення величини роботи потоку:

A=gQtH.

 

Потужність це робота, яка виконана за одиницю часу:

 

N==gQH, [кВт].

 

При значеннях густини води =1000 кг/м3, прискорення вільного падіння g=9,81 м/с2, витрати Q у м3/с і напорах Н у метрах, отримуємо

N=9,81QH, [кВт].

Енергія водотоку це потужність, яка виконана за одиницю часу t, год:

E=Nt=9,81QHt, [кВт·год].

Підставляючи значення обєму стоку річки, що проходить через розрахункові створи за час t=3600с, W=3600·Q·t, отримуємо залежність для визначення енергії:

 

, [кВт·год].

 

2.2 Принцип роботи ГЕС, її потужність і виробіток енергії

 

На ГЕС механічна енергія води перетворюється у електричну. Вода під дією сили тяжіння перетікає із верхнього у нижній бєф і обертає робоче колесо турбіни, на одному валу з яким знаходиться ротор генератора електричного струму. Гідротурбіна разом із гідрогенератором називається гідроагрегат. У турбіні гідравлічна енергія води перетворюється у механічну енергію обертання робочого колеса разом із ротором генератора. У генераторі механічна енергія обертів перетворюється у електричну.

Для роботи ГЕС необхідна витрата води (Q) і напір (Н).

Потужність гідроагрегата (Na) і ГЕС в цілому (NГЕС) визначаються за залежностями:

 

Na=9,81QHтг; NГЕС=zaNa, [кВт];

 

виробіток електроенергії рівний:

 

[кВт·год],

 

де т i г коефіцієнти корисної дії, відповідно, турбіни і генератора;

za кількість гідроагрегатів ГЕС.

 

2.3 Греблевий спосіб створення напору

 

Суть створення греблевого напору полягає у тому, що річка у створі перегороджується підпірною спорудою (глухою та водозливною греблями, русловою ГЕС та ін.), за рахунок чого створюється водосховище, різниця рівнів якого і рівнів у нижньому бєфі створює напір (рис. 2.2).

 

 

Характерними відмітками водосховища є:

- нормальний підпертий рівень (НПР) це верхня межа рівня води, при якому ГЕС і інші споруди гідровузла працюють тривалий час із збереженням нормальних запасів надійності, передбачених технічними умовами;

- рівень мертвого обєму (РМО) мінімальний рівень водосховища, до якого можливе його спрацювання;

- форсований підпертий рівень (ФПР) максимальний можливий рівень води за умови надійності споруд при проходженні паводкових витрат.

Обєм води, який заключний між НПР і РМО називається корисним обємом водосховища (Wкор), а обєм води, закумульований нижче РМО мертвим обємом (WМО). Обєм води, який заключний між ФПР і НПР називається резервним обємом водосховища (Wрез).

Різниці відміток верхнього і нижнього бєфів створюють напори. Розрізняють статичні (Нст) та корисні (Нкор) напори.

 

Нст,макс=НПР-НБмін, Нст,мін=РМО-НБQгес.

 

Корисні напори ГЕС менші від статичних на величину втрат напору (hw), яка у залежності від компонування гідровузлів приймається у межах 515 % (для руслових ГЕС 5 % від НСТ, для пригреблевих 10% від НСТ, для дериваційних 15 % від НСТ):

 

Нкор=Нст-hw, hw=(1,05...1,15)Hст.

 

2.4 Дериваційний спосіб створення напору

 

На гірських річках із значним похилом концентрація напору, як правило, здійснюється по дериваційній схемі. При цьому напір створюється не греблевим способом, а за рахунок напірної /тунелі/ чи безнапірної /лотки, канали і т.п./ деривації.

У дериваційній схемі виділяють головний вузол споруд, деривацію та станційний вузол споруд.

Пригреблево-дериваційна схема має переваги при відповідних топографічних та інженерно-геологічних умовах. Так, на гірській річці може бути побудована порівняно висока гребля, яка дозволяє використовувати частину падіння річки і створити водосховище для регулювання витрат. Далі із верхнього бєфу вода може бути відведена у деривацію, яка дозволяє використовувати па

Похожие работы

1 2 >